BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 18035373)

  • 1. Crosstalk between the protein surface and hydrophobic core in a core-swapped fibronectin type III domain.
    Billings KS; Best RB; Rutherford TJ; Clarke J
    J Mol Biol; 2008 Jan; 375(2):560-71. PubMed ID: 18035373
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Backbone dynamics of homologous fibronectin type III cell adhesion domains from fibronectin and tenascin.
    Carr PA; Erickson HP; Palmer AG
    Structure; 1997 Jul; 5(7):949-59. PubMed ID: 9261088
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Designing an extracellular matrix protein with enhanced mechanical stability.
    Ng SP; Billings KS; Ohashi T; Allen MD; Best RB; Randles LG; Erickson HP; Clarke J
    Proc Natl Acad Sci U S A; 2007 Jun; 104(23):9633-7. PubMed ID: 17535921
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Two proteins with the same structure respond very differently to mutation: the role of plasticity in protein stability.
    Cota E; Hamill SJ; Fowler SB; Clarke J
    J Mol Biol; 2000 Sep; 302(3):713-25. PubMed ID: 10986129
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The folding nucleus of a fibronectin type III domain is composed of core residues of the immunoglobulin-like fold.
    Cota E; Steward A; Fowler SB; Clarke J
    J Mol Biol; 2001 Feb; 305(5):1185-94. PubMed ID: 11162123
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydrophobic core fluidity of homologous protein domains: relation of side-chain dynamics to core composition and packing.
    Best RB; Rutherford TJ; Freund SM; Clarke J
    Biochemistry; 2004 Feb; 43(5):1145-55. PubMed ID: 14756550
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanical design of the third FnIII domain of tenascin-C.
    Peng Q; Zhuang S; Wang M; Cao Y; Khor Y; Li H
    J Mol Biol; 2009 Mar; 386(5):1327-42. PubMed ID: 19452631
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conformational dynamics in loop swap mutants of homologous fibronectin type III domains.
    Siggers K; Soto C; Palmer AG
    Biophys J; 2007 Oct; 93(7):2447-56. PubMed ID: 17526562
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Folding of beta-sandwich proteins: three-state transition of a fibronectin type III module.
    Cota E; Clarke J
    Protein Sci; 2000 Jan; 9(1):112-20. PubMed ID: 10739253
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Plasticity within the obligatory folding nucleus of an immunoglobulin-like domain.
    Lappalainen I; Hurley MG; Clarke J
    J Mol Biol; 2008 Jan; 375(2):547-59. PubMed ID: 18022190
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of boundary selection on the stability and folding of the third fibronectin type III domain from human tenascin.
    Hamill SJ; Meekhof AE; Clarke J
    Biochemistry; 1998 Jun; 37(22):8071-9. PubMed ID: 9609701
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinetic partitioning mechanism governs the folding of the third FnIII domain of tenascin-C: evidence at the single-molecule level.
    Peng Q; Fang J; Wang M; Li H
    J Mol Biol; 2011 Sep; 412(4):698-709. PubMed ID: 21839747
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanical unfolding of TNfn3: the unfolding pathway of a fnIII domain probed by protein engineering, AFM and MD simulation.
    Ng SP; Rounsevell RW; Steward A; Geierhaas CD; Williams PM; Paci E; Clarke J
    J Mol Biol; 2005 Jul; 350(4):776-89. PubMed ID: 15964016
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The folding of an immunoglobulin-like Greek key protein is defined by a common-core nucleus and regions constrained by topology.
    Hamill SJ; Steward A; Clarke J
    J Mol Biol; 2000 Mar; 297(1):165-78. PubMed ID: 10704314
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Folding and stability of a fibronectin type III domain of human tenascin.
    Clarke J; Hamill SJ; Johnson CM
    J Mol Biol; 1997 Aug; 270(5):771-8. PubMed ID: 9245604
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stabilization of a fibronectin type III domain by the removal of unfavorable electrostatic interactions on the protein surface.
    Koide A; Jordan MR; Horner SR; Batori V; Koide S
    Biochemistry; 2001 Aug; 40(34):10326-33. PubMed ID: 11513611
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stabilization of the third fibronectin type III domain of human tenascin-C through minimal mutation and rational design.
    Gilbreth RN; Chacko BM; Grinberg L; Swers JS; Baca M
    Protein Eng Des Sel; 2014 Oct; 27(10):411-8. PubMed ID: 24996411
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Backtracking due to residual structure in the unfolded state changes the folding of the third fibronectin type III domain from tenascin-C.
    Tripathi S; Makhatadze GI; Garcia AE
    J Phys Chem B; 2013 Jan; 117(3):800-10. PubMed ID: 23268597
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of the transition states for folding of two Ig-like proteins from different superfamilies.
    Geierhaas CD; Paci E; Vendruscolo M; Clarke J
    J Mol Biol; 2004 Oct; 343(4):1111-23. PubMed ID: 15476825
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exploring the potential of the monobody scaffold: effects of loop elongation on the stability of a fibronectin type III domain.
    Batori V; Koide A; Koide S
    Protein Eng; 2002 Dec; 15(12):1015-20. PubMed ID: 12601141
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.