BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 18035819)

  • 1. Influence of microwave irradiation on enzymatic properties: applications in enzyme chemistry.
    Rejasse B; Lamare S; Legoy MD; Besson T
    J Enzyme Inhib Med Chem; 2007 Oct; 22(5):518-26. PubMed ID: 18035819
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microwave Flow Chemistry as a Methodology in Organic Syntheses, Enzymatic Reactions, and Nanoparticle Syntheses.
    Horikoshi S; Serpone N
    Chem Rec; 2019 Jan; 19(1):118-139. PubMed ID: 30277645
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microwave-assisted enzyme-catalyzed reactions in various solvent systems.
    Lin SS; Wu CH; Sun MC; Sun CM; Ho YP
    J Am Soc Mass Spectrom; 2005 Apr; 16(4):581-8. PubMed ID: 15792728
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Probing the effects of microwave irradiation on enzyme-catalysed organic transformations: the case of lipase-catalysed transesterification reactions.
    Leadbeater NE; Stencel LM; Wood EC
    Org Biomol Chem; 2007 Apr; 5(7):1052-5. PubMed ID: 17377658
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Investigation on low power microwave irradiation-assisted enzymatic esterification in organic solvent by fluorescence spectroscopy].
    Min R; Fang Y; Xia YM
    Guang Pu Xue Yu Guang Pu Fen Xi; 2009 Feb; 29(2):428-31. PubMed ID: 19445220
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of microwave irradiation on enzymatic hydrolysis of rice straw.
    Zhu S; Wu Y; Yu Z; Zhang X; Li H; Gao M
    Bioresour Technol; 2006 Oct; 97(15):1964-8. PubMed ID: 16216494
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microwave-assisted chemistry: synthetic applications for rapid assembly of nanomaterials and organics.
    Gawande MB; Shelke SN; Zboril R; Varma RS
    Acc Chem Res; 2014 Apr; 47(4):1338-48. PubMed ID: 24666323
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Unraveling the mysteries of microwave chemistry using silicon carbide reactor technology.
    Kappe CO
    Acc Chem Res; 2013 Jul; 46(7):1579-87. PubMed ID: 23463987
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Advances in microwave-assisted combinatorial chemistry without polymer-supported reagents.
    Martínez-Palou R
    Mol Divers; 2006 Aug; 10(3):435-62. PubMed ID: 16896542
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Controlled Microwave Heating Accelerates Rolling Circle Amplification.
    Yoshimura T; Suzuki T; Mineki S; Ohuchi S
    PLoS One; 2015; 10(9):e0136532. PubMed ID: 26348227
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The microwave heating mechanism of N-(4-methoxybenzyliden)-4-butylaniline in liquid crystalline and isotropic phases as determined using in situ microwave irradiation NMR spectroscopy.
    Tasei Y; Tanigawa F; Kawamura I; Fujito T; Sato M; Naito A
    Phys Chem Chem Phys; 2015 Apr; 17(14):9082-9. PubMed ID: 25752926
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Toward rapid, "green", predictable microwave-assisted synthesis.
    Roberts BA; Strauss CR
    Acc Chem Res; 2005 Aug; 38(8):653-61. PubMed ID: 16104688
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microwave Assisted Organic Synthesis of Heterocycles in Aqueous Media: Recent Advances in Medicinal Chemistry.
    Frecentese F; Saccone I; Caliendo G; Corvino A; Fiorino F; Magli E; Perissutti E; Severino B; Santagada V
    Med Chem; 2016; 12(8):720-732. PubMed ID: 27140185
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stability improvement of immobilized Candida antarctica lipase B in an organic medium under microwave radiation.
    Réjasse B; Lamare S; Legoy MD; Besson T
    Org Biomol Chem; 2004 Apr; 2(7):1086-9. PubMed ID: 15034633
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microwave-promoted organic synthesis using ionic liquids: a mini review.
    Leadbeatera NE; Torenius HM; Tye H
    Comb Chem High Throughput Screen; 2004 Aug; 7(5):511-28. PubMed ID: 15320715
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanism for microwave heating of 1-(4'-cyanophenyl)-4-propylcyclohexane characterized by in situ microwave irradiation NMR spectroscopy.
    Tasei Y; Yamakami T; Kawamura I; Fujito T; Ushida K; Sato M; Naito A
    J Magn Reson; 2015 May; 254():27-34. PubMed ID: 25771526
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluating the potential nonthermal microwave effects of microwave-assisted proteolytic reactions.
    Reddy PM; Huang YS; Chen CT; Chang PC; Ho YP
    J Proteomics; 2013 Mar; 80():160-70. PubMed ID: 23352896
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microwave-accelerated homogeneous catalysis in organic chemistry.
    Larhed M; Moberg C; Hallberg A
    Acc Chem Res; 2002 Sep; 35(9):717-27. PubMed ID: 12234201
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis of 2-Ethylhexyl Palmitate Catalyzed by Enzyme Under Microwave.
    Wang L; Zhang Y; Zhang Y; Zheng L; Huang H; Wang Z
    Appl Biochem Biotechnol; 2018 May; 185(1):347-356. PubMed ID: 29152693
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microwave activation of enzymatic catalysis.
    Young DD; Nichols J; Kelly RM; Deiters A
    J Am Chem Soc; 2008 Aug; 130(31):10048-9. PubMed ID: 18613673
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.