These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

287 related articles for article (PubMed ID: 18035875)

  • 1. Spatial updating grand canonical Monte Carlo algorithms for fluid simulation: generalization to continuous potentials and parallel implementation.
    O'Keeffe CJ; Ren R; Orkoulas G
    J Chem Phys; 2007 Nov; 127(19):194103. PubMed ID: 18035875
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acceleration of Monte Carlo simulations through spatial updating in the grand canonical ensemble.
    Orkoulas G
    J Chem Phys; 2007 Aug; 127(8):084106. PubMed ID: 17764228
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Parallel canonical Monte Carlo simulations through sequential updating of particles.
    O'Keeffe CJ; Orkoulas G
    J Chem Phys; 2009 Apr; 130(13):134109. PubMed ID: 19355719
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Parallel Markov chain Monte Carlo simulations.
    Ren R; Orkoulas G
    J Chem Phys; 2007 Jun; 126(21):211102. PubMed ID: 17567181
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spatial updating in the great grand canonical ensemble.
    Orkoulas G; Noon DP
    J Chem Phys; 2009 Oct; 131(16):161106. PubMed ID: 19894918
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simulating prescribed particle densities in the grand canonical ensemble using iterative algorithms.
    Malasics A; Gillespie D; Boda D
    J Chem Phys; 2008 Mar; 128(12):124102. PubMed ID: 18376903
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Acceleration of Markov chain Monte Carlo simulations through sequential updating.
    Ren R; Orkoulas G
    J Chem Phys; 2006 Feb; 124(6):64109. PubMed ID: 16483198
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Determination of fluid-phase behavior using transition-matrix Monte Carlo: binary Lennard-Jones mixtures.
    Shen VK; Errington JR
    J Chem Phys; 2005 Feb; 122(6):064508. PubMed ID: 15740389
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Grand potential, helmholtz free energy, and entropy calculation in heterogeneous cylindrical pores by the grand canonical Monte Carlo simulation method.
    Puibasset J
    J Phys Chem B; 2005 Jan; 109(1):480-7. PubMed ID: 16851039
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fast off-lattice Monte Carlo simulations with "soft" repulsive potentials.
    Wang Q; Yin Y
    J Chem Phys; 2009 Mar; 130(10):104903. PubMed ID: 19292555
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The structure of fluids confined in crystalline slitlike nanoscopic pores.
    Sałamacha L; Patrykiejew A; Sokołowski S; Binder K
    J Chem Phys; 2005 Feb; 122(7):074703. PubMed ID: 15743261
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simulation of chemical potentials and phase equilibria in two- and three-dimensional square-well fluids: finite size effects.
    Vörtler HL; Schäfer K; Smith WR
    J Phys Chem B; 2008 Apr; 112(15):4656-61. PubMed ID: 18358019
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A simulation method for the calculation of chemical potentials in small, inhomogeneous, and dense systems.
    Neimark AV; Vishnyakov A
    J Chem Phys; 2005 Jun; 122(23):234108. PubMed ID: 16008431
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On the efficiency of exchange in parallel tempering monte carlo simulations.
    Predescu C; Predescu M; Ciobanu CV
    J Phys Chem B; 2005 Mar; 109(9):4189-96. PubMed ID: 16851481
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Local structures of fluid with discrete spherical potential: Theory and grand canonical ensemble Monte Carlo simulation.
    Zhou S; Lajovic A; Jamnik A
    J Chem Phys; 2008 Sep; 129(12):124503. PubMed ID: 19045032
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The structure of fluids confined in crystalline slitlike nanoscopic pores: bilayers.
    Sałamacha L; Patrykiejew A; Sokołowski S; Binder K
    J Chem Phys; 2004 Jan; 120(2):1017-30. PubMed ID: 15267939
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of Interaction Forces between Macroparticles in Simple Fluids by Molecular Dynamics Simulation.
    Shinto H; Miyahara M; Higashitani K
    J Colloid Interface Sci; 1999 Jan; 209(1):79-85. PubMed ID: 9878139
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Searching for globally optimal functional forms for interatomic potentials using genetic programming with parallel tempering.
    Slepoy A; Peters MD; Thompson AP
    J Comput Chem; 2007 Nov; 28(15):2465-71. PubMed ID: 17565499
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular dynamics simulation of confined fluids in isosurface-isothermal-isobaric ensemble.
    Eslami H; Mozaffari F; Moghadasi J; Müller-Plathe F
    J Chem Phys; 2008 Nov; 129(19):194702. PubMed ID: 19026076
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fluid bridges confined between chemically nanopatterned solid substrates.
    Schoen M
    Phys Chem Chem Phys; 2008 Jan; 10(2):223-56. PubMed ID: 18213411
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.