BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 18036177)

  • 1. Glucose utilization of strains lacking PGI1 and expressing a transhydrogenase suggests differences in the pentose phosphate capacity among Saccharomyces cerevisiae strains.
    Heux S; Cadiere A; Dequin S
    FEMS Yeast Res; 2008 Mar; 8(2):217-24. PubMed ID: 18036177
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhancing the flux of D-glucose to the pentose phosphate pathway in Saccharomyces cerevisiae for the production of D-ribose and ribitol.
    Toivari MH; Maaheimo H; Penttilä M; Ruohonen L
    Appl Microbiol Biotechnol; 2010 Jan; 85(3):731-9. PubMed ID: 19711072
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two mechanisms for oxidation of cytosolic NADPH by Kluyveromyces lactis mitochondria.
    Overkamp KM; Bakker BM; Steensma HY; van Dijken JP; Pronk JT
    Yeast; 2002 Jul; 19(10):813-24. PubMed ID: 12112236
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transcription factor Stb5p is essential for acetaldehyde tolerance in Saccharomyces cerevisiae.
    Matsufuji Y; Nakagawa T; Fujimura S; Tani A; Nakagawa J
    J Basic Microbiol; 2010 Oct; 50(5):494-8. PubMed ID: 20806246
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metabolic-flux and network analysis in fourteen hemiascomycetous yeasts.
    Blank LM; Lehmbeck F; Sauer U
    FEMS Yeast Res; 2005 Apr; 5(6-7):545-58. PubMed ID: 15780654
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In Saccharomyces cerevisiae deletion of phosphoglucose isomerase can be suppressed by increased activities of enzymes of the hexose monophosphate pathway.
    Dickinson JR; Sobanski MA; Hewlins MJ
    Microbiology (Reading); 1995 Feb; 141 ( Pt 2)():385-91. PubMed ID: 7704269
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The level of glucose-6-phosphate dehydrogenase activity strongly influences xylose fermentation and inhibitor sensitivity in recombinant Saccharomyces cerevisiae strains.
    Jeppsson M; Johansson B; Jensen PR; Hahn-Hägerdal B; Gorwa-Grauslund MF
    Yeast; 2003 Nov; 20(15):1263-72. PubMed ID: 14618564
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fermentation characteristics and protein expression patterns in a recombinant Escherichia coli mutant lacking phosphoglucose isomerase for poly(3-hydroxybutyrate) production.
    Kabir MM; Shimizu K
    Appl Microbiol Biotechnol; 2003 Aug; 62(2-3):244-55. PubMed ID: 12883871
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Amperometric response from the glycolytic versus the pentose phosphate pathway in Saccharomyces cerevisiae cells.
    Spégel CF; Heiskanen AR; Kostesha N; Johanson TH; Gorwa-Grauslund MF; Koudelka-Hep M; Emnéus J; Ruzgas T
    Anal Chem; 2007 Dec; 79(23):8919-26. PubMed ID: 17973460
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of the NAD-dependent glutamate dehydrogenase in restoring growth on glucose of a Saccharomyces cerevisiae phosphoglucose isomerase mutant.
    Boles E; Lehnert W; Zimmermann FK
    Eur J Biochem; 1993 Oct; 217(1):469-77. PubMed ID: 7901008
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improved NADPH supply for xylitol production by engineered Escherichia coli with glycolytic mutations.
    Chin JW; Cirino PC
    Biotechnol Prog; 2011; 27(2):333-41. PubMed ID: 21344680
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Saccharomyces cerevisiae engineered to produce D-xylonate.
    Toivari MH; Ruohonen L; Richard P; Penttilä M; Wiebe MG
    Appl Microbiol Biotechnol; 2010 Oct; 88(3):751-60. PubMed ID: 20680264
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolic flux response to phosphoglucose isomerase knock-out in Escherichia coli and impact of overexpression of the soluble transhydrogenase UdhA.
    Canonaco F; Hess TA; Heri S; Wang T; Szyperski T; Sauer U
    FEMS Microbiol Lett; 2001 Nov; 204(2):247-52. PubMed ID: 11731130
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deletion of the phosphoglucose isomerase structural gene makes growth and sporulation glucose dependent in Saccharomyces cerevisiae.
    Aguilera A
    Mol Gen Genet; 1986 Aug; 204(2):310-6. PubMed ID: 3020369
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of NADPH supply during xylitol production by engineered Escherichia coli.
    Chin JW; Khankal R; Monroe CA; Maranas CD; Cirino PC
    Biotechnol Bioeng; 2009 Jan; 102(1):209-20. PubMed ID: 18698648
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Correlation between glucose/fructose discrepancy and hexokinase kinetic properties in different Saccharomyces cerevisiae wine yeast strains.
    Berthels NJ; Cordero Otero RR; Bauer FF; Pretorius IS; Thevelein JM
    Appl Microbiol Biotechnol; 2008 Jan; 77(5):1083-91. PubMed ID: 17955190
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tolerance to furfural-induced stress is associated with pentose phosphate pathway genes ZWF1, GND1, RPE1, and TKL1 in Saccharomyces cerevisiae.
    Gorsich SW; Dien BS; Nichols NN; Slininger PJ; Liu ZL; Skory CD
    Appl Microbiol Biotechnol; 2006 Jul; 71(3):339-49. PubMed ID: 16222531
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Revisiting the 13C-label distribution of the non-oxidative branch of the pentose phosphate pathway based upon kinetic and genetic evidence.
    Kleijn RJ; van Winden WA; van Gulik WM; Heijnen JJ
    FEBS J; 2005 Oct; 272(19):4970-82. PubMed ID: 16176270
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The glucose-6-phosphate-isomerase reaction is essential for normal glucose repression in Saccharomyces cerevisiae.
    Sierkstra LN; Silljé HH; Verbakel JM; Verrips CT
    Eur J Biochem; 1993 May; 214(1):121-7. PubMed ID: 8508783
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metabolic-flux profiling of the yeasts Saccharomyces cerevisiae and Pichia stipitis.
    Fiaux J; Cakar ZP; Sonderegger M; Wüthrich K; Szyperski T; Sauer U
    Eukaryot Cell; 2003 Feb; 2(1):170-80. PubMed ID: 12582134
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.