These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 18036551)

  • 21. Regulation of oxygen sensitivity in adrenal chromaffin cells.
    Nurse CA; Buttigieg J; Brown S; Holloway AC
    Ann N Y Acad Sci; 2009 Oct; 1177():132-9. PubMed ID: 19845615
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A phenotypic perspective on Mammalian oxygen sensor candidates.
    Baysal BE
    Ann N Y Acad Sci; 2006 Aug; 1073():221-33. PubMed ID: 17102090
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mitochondria and cellular oxygen sensing in the HIF pathway.
    Taylor CT
    Biochem J; 2008 Jan; 409(1):19-26. PubMed ID: 18062771
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Airway chemotransduction: from oxygen sensor to cellular effector.
    Kemp PJ; Lewis A; Hartness ME; Searle GJ; Miller P; O'Kelly I; Peers C
    Am J Respir Crit Care Med; 2002 Dec; 166(12 Pt 2):S17-24. PubMed ID: 12471084
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Current paradigms in cellular oxygen sensing.
    Schumacker PT
    Adv Exp Med Biol; 2003; 543():57-71. PubMed ID: 14713114
    [TBL] [Abstract][Full Text] [Related]  

  • 26. O2 sensing, mitochondria and ROS signaling: The fog is lifting.
    Waypa GB; Smith KA; Schumacker PT
    Mol Aspects Med; 2016; 47-48():76-89. PubMed ID: 26776678
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Hemeoxygenase-2 as an O2 sensor in K+ channel-dependent chemotransduction.
    Kemp PJ
    Biochem Biophys Res Commun; 2005 Dec; 338(1):648-52. PubMed ID: 16137652
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Redox signaling and reactive oxygen species in hypoxic pulmonary vasoconstriction.
    Fuchs B; Sommer N; Dietrich A; Schermuly RT; Ghofrani HA; Grimminger F; Seeger W; Gudermann T; Weissmann N
    Respir Physiol Neurobiol; 2010 Dec; 174(3):282-91. PubMed ID: 20801235
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mitochondrial function and carotid body transduction.
    Donnelly DF; Carroll JL
    High Alt Med Biol; 2005; 6(2):121-32. PubMed ID: 16060847
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Redox-sensitive transient receptor potential channels in oxygen sensing and adaptation.
    Mori Y; Takahashi N; Polat OK; Kurokawa T; Takeda N; Inoue M
    Pflugers Arch; 2016 Jan; 468(1):85-97. PubMed ID: 26149285
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Conversion of a heme-based oxygen sensor to a heme oxygenase by hydrogen sulfide: effects of mutations in the heme distal side of a heme-based oxygen sensor phosphodiesterase (Ec DOS).
    Du Y; Liu G; Yan Y; Huang D; Luo W; Martinkova M; Man P; Shimizu T
    Biometals; 2013 Oct; 26(5):839-52. PubMed ID: 23736976
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Heterozygous HIF-1alpha deficiency impairs carotid body-mediated systemic responses and reactive oxygen species generation in mice exposed to intermittent hypoxia.
    Peng YJ; Yuan G; Ramakrishnan D; Sharma SD; Bosch-Marce M; Kumar GK; Semenza GL; Prabhakar NR
    J Physiol; 2006 Dec; 577(Pt 2):705-16. PubMed ID: 16973705
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Oxygen sensing by mitochondria at complex III: the paradox of increased reactive oxygen species during hypoxia.
    Guzy RD; Schumacker PT
    Exp Physiol; 2006 Sep; 91(5):807-19. PubMed ID: 16857720
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Oxygen sensing requires mitochondrial ROS but not oxidative phosphorylation.
    Brunelle JK; Bell EL; Quesada NM; Vercauteren K; Tiranti V; Zeviani M; Scarpulla RC; Chandel NS
    Cell Metab; 2005 Jun; 1(6):409-14. PubMed ID: 16054090
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Vascular adaptations to hypoxia: molecular and cellular mechanisms regulating vascular tone.
    Paffett ML; Walker BR
    Essays Biochem; 2007; 43():105-19. PubMed ID: 17705796
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Oxygen activates the Rho/Rho-kinase pathway and induces RhoB and ROCK-1 expression in human and rabbit ductus arteriosus by increasing mitochondria-derived reactive oxygen species: a newly recognized mechanism for sustaining ductal constriction.
    Kajimoto H; Hashimoto K; Bonnet SN; Haromy A; Harry G; Moudgil R; Nakanishi T; Rebeyka I; Thébaud B; Michelakis ED; Archer SL
    Circulation; 2007 Apr; 115(13):1777-88. PubMed ID: 17353442
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Reactive oxygen species and molecular regulation of renal oxygenation.
    Zou AP; Cowley AW
    Acta Physiol Scand; 2003 Nov; 179(3):233-41. PubMed ID: 14616239
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Immunocytochemical localization on O2-sensing protein (NADPH oxidase) in chemoreceptor cells.
    Youngson C; Nurse C; Yeger H; Curnutte JT; Vollmer C; Wong V; Cutz E
    Microsc Res Tech; 1997 Apr; 37(1):101-6. PubMed ID: 9144626
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Translating blood-borne stimuli: chemotransduction in the carotid body.
    Kumar P; Phil D
    Sheng Li Xue Bao; 2007 Apr; 59(2):128-32. PubMed ID: 17437033
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Reactive oxygen species facilitate oxygen sensing.
    Prabhakar NR; Peng YJ; Yuan G; Kumar GK
    Novartis Found Symp; 2006; 272():95-9; discussion 100-5, 131-40. PubMed ID: 16686431
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.