BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 18036575)

  • 1. Organization of last-order premotor interneurons related to the protraction of tongue in the frog, Rana esculenta.
    Rácz E; Bácskai T; Szabo G; Székely G; Matesz C
    Brain Res; 2008 Jan; 1187():111-5. PubMed ID: 18036575
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Brainstem circuits underlying the prey-catching behavior of the frog.
    Matesz K; Kecskes S; Bácskai T; Rácz É; Birinyi A
    Brain Behav Evol; 2014; 83(2):104-11. PubMed ID: 24776991
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of lingual motor control circuits using two strains of pseudorabies virus.
    Travers JB; Rinaman L
    Neuroscience; 2002; 115(4):1139-51. PubMed ID: 12453486
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Organization of the motor centres for the innervation of different muscles of the tongue: a neuromorphological study in the frog.
    Matesz C; Schmidt I; Szabo L; Birinyi A; Székely G
    Eur J Morphol; 1999 Apr; 37(2-3):190-4. PubMed ID: 10342455
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neuronal circuitry and synaptic organization of trigeminal proprioceptive afferents mediating tongue movement and jaw-tongue coordination via hypoglossal premotor neurons.
    Luo P; Zhang J; Yang R; Pendlebury W
    Eur J Neurosci; 2006 Jun; 23(12):3269-83. PubMed ID: 16820017
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Trigemino-reticulo-facial and trigemino-reticulo-hypoglossal pathways in the rat.
    Zerari-Mailly F; Pinganaud G; Dauvergne C; Buisseret P; Buisseret-Delmas C
    J Comp Neurol; 2001 Jan; 429(1):80-93. PubMed ID: 11086291
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hypoglossal and reticular interneurons involved in oro-facial coordination in the rat.
    Popratiloff AS; Streppel M; Gruart A; Guntinas-Lichius O; Angelov DN; Stennert E; Delgado-García JM; Neiss WF
    J Comp Neurol; 2001 May; 433(3):364-79. PubMed ID: 11298361
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Crossing dendrites of the hypoglossal motoneurons: possible morphological substrate of coordinated and synchronized tongue movements of the frog, Rana esculenta.
    Bácskai T; Veress G; Halasi G; Matesz C
    Brain Res; 2010 Feb; 1313():89-96. PubMed ID: 19962369
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Anatomical evidence for brainstem circuits mediating feeding motor programs in the leopard frog, Rana pipiens.
    Anderson CW
    Exp Brain Res; 2001 Sep; 140(1):12-9. PubMed ID: 11500793
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultrastructural features of synapse from dorsal parvocellular reticular formation neurons to hypoglossal motoneurons of the rat.
    Zhang J; Luo P
    Brain Res; 2003 Feb; 963(1-2):262-73. PubMed ID: 12560132
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neural circuits underlying tongue movements for the prey-catching behavior in frog: distribution of primary afferent terminals on motoneurons supplying the tongue.
    Kecskes S; Matesz C; Gaál B; Birinyi A
    Brain Struct Funct; 2016 Apr; 221(3):1533-53. PubMed ID: 25575900
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Jaw muscle spindle afferents coordinate multiple orofacial motoneurons via common premotor neurons in rats: an electrophysiological and anatomical study.
    Zhang J; Luo P; Ro JY; Xiong H
    Brain Res; 2012 Dec; 1489():37-47. PubMed ID: 23085474
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Axonal projections and synapses from the supratrigeminal region to hypoglossal motoneurons in the rat.
    Luo P; Dessem D; Zhang J
    Brain Res; 2001 Feb; 890(2):314-29. PubMed ID: 11164798
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transneuronal labeling in hamster brainstem following lingual injections with herpes simplex virus-1.
    Travers JB; Montgomery N; Sheridan J
    Neuroscience; 1995 Oct; 68(4):1277-93. PubMed ID: 8545000
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of premotor interneurons which project bilaterally to the trigeminal motor, facial or hypoglossal nuclei: a fluorescent retrograde double-labeling study in the rat.
    Li YQ; Takada M; Mizuno N
    Brain Res; 1993 May; 611(1):160-4. PubMed ID: 8518944
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dendritic architecture of hypoglossal motoneurons projecting to extrinsic tongue musculature in the rat.
    Altschuler SM; Bao X; Miselis RR
    J Comp Neurol; 1994 Apr; 342(4):538-50. PubMed ID: 8040364
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nociceptive afferents to the premotor neurons that send axons simultaneously to the facial and hypoglossal motoneurons by means of axon collaterals.
    Dong Y; Li J; Zhang F; Li Y
    PLoS One; 2011; 6(9):e25615. PubMed ID: 21980505
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Internuclear neurons in the ocular motor system of frogs.
    Straka H; Dieringer N
    J Comp Neurol; 1991 Oct; 312(4):537-48. PubMed ID: 1761740
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Light and electron microscopic observations of a direct projection from mesencephalic trigeminal nucleus neurons to hypoglossal motoneurons in the rat.
    Zhang J; Luo P; Pendlebury WW
    Brain Res; 2001 Oct; 917(1):67-80. PubMed ID: 11602230
    [TBL] [Abstract][Full Text] [Related]  

  • 20. C-terminals in the mouse branchiomotor nuclei originate from the magnocellular reticular formation.
    Matsui T; Hongo Y; Haizuka Y; Kaida K; Matsumura G; Martin DM; Kobayashi Y
    Neurosci Lett; 2013 Aug; 548():137-42. PubMed ID: 23756176
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.