These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
202 related articles for article (PubMed ID: 18036575)
1. Organization of last-order premotor interneurons related to the protraction of tongue in the frog, Rana esculenta. Rácz E; Bácskai T; Szabo G; Székely G; Matesz C Brain Res; 2008 Jan; 1187():111-5. PubMed ID: 18036575 [TBL] [Abstract][Full Text] [Related]
2. Brainstem circuits underlying the prey-catching behavior of the frog. Matesz K; Kecskes S; Bácskai T; Rácz É; Birinyi A Brain Behav Evol; 2014; 83(2):104-11. PubMed ID: 24776991 [TBL] [Abstract][Full Text] [Related]
3. Identification of lingual motor control circuits using two strains of pseudorabies virus. Travers JB; Rinaman L Neuroscience; 2002; 115(4):1139-51. PubMed ID: 12453486 [TBL] [Abstract][Full Text] [Related]
4. Organization of the motor centres for the innervation of different muscles of the tongue: a neuromorphological study in the frog. Matesz C; Schmidt I; Szabo L; Birinyi A; Székely G Eur J Morphol; 1999 Apr; 37(2-3):190-4. PubMed ID: 10342455 [TBL] [Abstract][Full Text] [Related]
5. Neuronal circuitry and synaptic organization of trigeminal proprioceptive afferents mediating tongue movement and jaw-tongue coordination via hypoglossal premotor neurons. Luo P; Zhang J; Yang R; Pendlebury W Eur J Neurosci; 2006 Jun; 23(12):3269-83. PubMed ID: 16820017 [TBL] [Abstract][Full Text] [Related]
6. Trigemino-reticulo-facial and trigemino-reticulo-hypoglossal pathways in the rat. Zerari-Mailly F; Pinganaud G; Dauvergne C; Buisseret P; Buisseret-Delmas C J Comp Neurol; 2001 Jan; 429(1):80-93. PubMed ID: 11086291 [TBL] [Abstract][Full Text] [Related]
7. Hypoglossal and reticular interneurons involved in oro-facial coordination in the rat. Popratiloff AS; Streppel M; Gruart A; Guntinas-Lichius O; Angelov DN; Stennert E; Delgado-García JM; Neiss WF J Comp Neurol; 2001 May; 433(3):364-79. PubMed ID: 11298361 [TBL] [Abstract][Full Text] [Related]
8. Crossing dendrites of the hypoglossal motoneurons: possible morphological substrate of coordinated and synchronized tongue movements of the frog, Rana esculenta. Bácskai T; Veress G; Halasi G; Matesz C Brain Res; 2010 Feb; 1313():89-96. PubMed ID: 19962369 [TBL] [Abstract][Full Text] [Related]
9. Anatomical evidence for brainstem circuits mediating feeding motor programs in the leopard frog, Rana pipiens. Anderson CW Exp Brain Res; 2001 Sep; 140(1):12-9. PubMed ID: 11500793 [TBL] [Abstract][Full Text] [Related]
10. Ultrastructural features of synapse from dorsal parvocellular reticular formation neurons to hypoglossal motoneurons of the rat. Zhang J; Luo P Brain Res; 2003 Feb; 963(1-2):262-73. PubMed ID: 12560132 [TBL] [Abstract][Full Text] [Related]
11. Neural circuits underlying tongue movements for the prey-catching behavior in frog: distribution of primary afferent terminals on motoneurons supplying the tongue. Kecskes S; Matesz C; Gaál B; Birinyi A Brain Struct Funct; 2016 Apr; 221(3):1533-53. PubMed ID: 25575900 [TBL] [Abstract][Full Text] [Related]
12. Jaw muscle spindle afferents coordinate multiple orofacial motoneurons via common premotor neurons in rats: an electrophysiological and anatomical study. Zhang J; Luo P; Ro JY; Xiong H Brain Res; 2012 Dec; 1489():37-47. PubMed ID: 23085474 [TBL] [Abstract][Full Text] [Related]
13. Axonal projections and synapses from the supratrigeminal region to hypoglossal motoneurons in the rat. Luo P; Dessem D; Zhang J Brain Res; 2001 Feb; 890(2):314-29. PubMed ID: 11164798 [TBL] [Abstract][Full Text] [Related]
14. Transneuronal labeling in hamster brainstem following lingual injections with herpes simplex virus-1. Travers JB; Montgomery N; Sheridan J Neuroscience; 1995 Oct; 68(4):1277-93. PubMed ID: 8545000 [TBL] [Abstract][Full Text] [Related]
15. Identification of premotor interneurons which project bilaterally to the trigeminal motor, facial or hypoglossal nuclei: a fluorescent retrograde double-labeling study in the rat. Li YQ; Takada M; Mizuno N Brain Res; 1993 May; 611(1):160-4. PubMed ID: 8518944 [TBL] [Abstract][Full Text] [Related]
16. Dendritic architecture of hypoglossal motoneurons projecting to extrinsic tongue musculature in the rat. Altschuler SM; Bao X; Miselis RR J Comp Neurol; 1994 Apr; 342(4):538-50. PubMed ID: 8040364 [TBL] [Abstract][Full Text] [Related]
17. Nociceptive afferents to the premotor neurons that send axons simultaneously to the facial and hypoglossal motoneurons by means of axon collaterals. Dong Y; Li J; Zhang F; Li Y PLoS One; 2011; 6(9):e25615. PubMed ID: 21980505 [TBL] [Abstract][Full Text] [Related]
18. Internuclear neurons in the ocular motor system of frogs. Straka H; Dieringer N J Comp Neurol; 1991 Oct; 312(4):537-48. PubMed ID: 1761740 [TBL] [Abstract][Full Text] [Related]
19. Light and electron microscopic observations of a direct projection from mesencephalic trigeminal nucleus neurons to hypoglossal motoneurons in the rat. Zhang J; Luo P; Pendlebury WW Brain Res; 2001 Oct; 917(1):67-80. PubMed ID: 11602230 [TBL] [Abstract][Full Text] [Related]
20. C-terminals in the mouse branchiomotor nuclei originate from the magnocellular reticular formation. Matsui T; Hongo Y; Haizuka Y; Kaida K; Matsumura G; Martin DM; Kobayashi Y Neurosci Lett; 2013 Aug; 548():137-42. PubMed ID: 23756176 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]