These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 18036591)

  • 1. Tropomyosin 4 regulates adhesion structures and resorptive capacity in osteoclasts.
    McMichael BK; Lee BS
    Exp Cell Res; 2008 Feb; 314(3):564-73. PubMed ID: 18036591
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tropomyosin isoforms localize to distinct microfilament populations in osteoclasts.
    McMichael BK; Kotadiya P; Singh T; Holliday LS; Lee BS
    Bone; 2006 Oct; 39(4):694-705. PubMed ID: 16765662
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High molecular weight tropomyosins regulate osteoclast cytoskeletal morphology.
    Kotadiya P; McMichael BK; Lee BS
    Bone; 2008 Nov; 43(5):951-60. PubMed ID: 18674650
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Podosome and sealing zone: specificity of the osteoclast model.
    Jurdic P; Saltel F; Chabadel A; Destaing O
    Eur J Cell Biol; 2006 Apr; 85(3-4):195-202. PubMed ID: 16546562
    [TBL] [Abstract][Full Text] [Related]  

  • 5. L-plastin phosphorylation regulates the early phase of sealing ring formation by actin bundling process in mouse osteoclasts.
    Chellaiah MA; Ma T; Majumdar S
    Exp Cell Res; 2018 Nov; 372(1):73-82. PubMed ID: 30244178
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Myosin X regulates sealing zone patterning in osteoclasts through linkage of podosomes and microtubules.
    McMichael BK; Cheney RE; Lee BS
    J Biol Chem; 2010 Mar; 285(13):9506-9515. PubMed ID: 20081229
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The RhoGAP activity of myosin IXB is critical for osteoclast podosome patterning, motility, and resorptive capacity.
    McMichael BK; Scherer KF; Franklin NC; Lee BS
    PLoS One; 2014; 9(1):e87402. PubMed ID: 24466350
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The architecture of the adhesive apparatus of cultured osteoclasts: from podosome formation to sealing zone assembly.
    Luxenburg C; Geblinger D; Klein E; Anderson K; Hanein D; Geiger B; Addadi L
    PLoS One; 2007 Jan; 2(1):e179. PubMed ID: 17264882
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Podosome organization drives osteoclast-mediated bone resorption.
    Georgess D; Machuca-Gayet I; Blangy A; Jurdic P
    Cell Adh Migr; 2014; 8(3):191-204. PubMed ID: 24714644
    [TBL] [Abstract][Full Text] [Related]  

  • 10. WASp deficiency in mice results in failure to form osteoclast sealing zones and defects in bone resorption.
    Calle Y; Jones GE; Jagger C; Fuller K; Blundell MP; Chow J; Chambers T; Thrasher AJ
    Blood; 2004 May; 103(9):3552-61. PubMed ID: 14726392
    [TBL] [Abstract][Full Text] [Related]  

  • 11. PYK2 in osteoclasts is an adhesion kinase, localized in the sealing zone, activated by ligation of alpha(v)beta3 integrin, and phosphorylated by src kinase.
    Duong LT; Lakkakorpi PT; Nakamura I; Machwate M; Nagy RM; Rodan GA
    J Clin Invest; 1998 Sep; 102(5):881-92. PubMed ID: 9727056
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanoscale architecture and coordination of actin cores within the sealing zone of human osteoclasts.
    Portes M; Mangeat T; Escallier N; Dufrancais O; Raynaud-Messina B; Thibault C; Maridonneau-Parini I; VĂ©rollet C; Poincloux R
    Elife; 2022 Jun; 11():. PubMed ID: 35727134
    [TBL] [Abstract][Full Text] [Related]  

  • 13. c-Src-mediated phosphorylation of thyroid hormone receptor-interacting protein 6 (TRIP6) promotes osteoclast sealing zone formation.
    McMichael BK; Meyer SM; Lee BS
    J Biol Chem; 2010 Aug; 285(34):26641-51. PubMed ID: 20547766
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Sealing Zone in Osteoclasts: A Self-Organized Structure on the Bone.
    Takito J; Inoue S; Nakamura M
    Int J Mol Sci; 2018 Mar; 19(4):. PubMed ID: 29587415
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultrastructural analysis of apatite-degrading capability of extended invasive podosomes in resorbing osteoclasts.
    Akisaka T; Yoshida A
    Micron; 2016 Sep; 88():37-47. PubMed ID: 27323283
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of surface microtopography on the assembly of the osteoclast resorption apparatus.
    Geblinger D; Zink C; Spencer ND; Addadi L; Geiger B
    J R Soc Interface; 2012 Jul; 9(72):1599-608. PubMed ID: 22090285
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polyphosphoinositides-dependent regulation of the osteoclast actin cytoskeleton and bone resorption.
    Biswas RS; Baker D; Hruska KA; Chellaiah MA
    BMC Cell Biol; 2004 May; 5():19. PubMed ID: 15142256
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Combined strategy of siRNA and osteoclast actin cytoskeleton automated imaging to identify novel regulators of bone resorption shows a non-mitotic function for anillin.
    Maurin J; Morel A; Hassen-Khodja C; Vives V; Jurdic P; Machuca-Gayet I; Blangy A
    Eur J Cell Biol; 2018 Nov; 97(8):568-579. PubMed ID: 30424898
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Actin-Binding Protein PPP1r18 Regulates Maturation, Actin Organization, and Bone Resorption Activity of Osteoclasts.
    Matsubara T; Kokabu S; Nakatomi C; Kinbara M; Maeda T; Yoshizawa M; Yasuda H; Takano-Yamamoto T; Baron R; Jimi E
    Mol Cell Biol; 2018 Feb; 38(4):. PubMed ID: 29158294
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of sealing ring formation by L-plastin and cortactin in osteoclasts.
    Ma T; Sadashivaiah K; Madayiputhiya N; Chellaiah MA
    J Biol Chem; 2010 Sep; 285(39):29911-24. PubMed ID: 20650888
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.