These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
163 related articles for article (PubMed ID: 18036751)
1. Effect of arginine hydrochloride and hydroxypropyl cellulose as stabilizers on the physical stability of high drug loading nanosuspensions of a poorly soluble compound. Ain-Ai A; Gupta PK Int J Pharm; 2008 Mar; 351(1-2):282-8. PubMed ID: 18036751 [TBL] [Abstract][Full Text] [Related]
2. Is the combination of cellulosic polymers and anionic surfactants a good strategy for ensuring physical stability of BCS Class II drug nanosuspensions? Bilgili E; Li M; Afolabi A Pharm Dev Technol; 2016; 21(4):499-510. PubMed ID: 25774989 [TBL] [Abstract][Full Text] [Related]
3. Formulation and drying of miconazole and itraconazole nanosuspensions. Cerdeira AM; Mazzotti M; Gander B Int J Pharm; 2013 Feb; 443(1-2):209-20. PubMed ID: 23291552 [TBL] [Abstract][Full Text] [Related]
4. Continuous production of drug nanoparticle suspensions via wet stirred media milling: a fresh look at the Rehbinder effect. Monteiro A; Afolabi A; Bilgili E Drug Dev Ind Pharm; 2013 Feb; 39(2):266-83. PubMed ID: 22503097 [TBL] [Abstract][Full Text] [Related]
5. Effect of fixed aqueous layer thickness of polymeric stabilizers on zeta potential and stability of aripiprazole nanosuspensions. Abdelbary AA; Li X; El-Nabarawi M; Elassasy A; Jasti B Pharm Dev Technol; 2013; 18(3):730-5. PubMed ID: 23033924 [TBL] [Abstract][Full Text] [Related]
6. Multi-faceted Characterization of Wet-milled Griseofulvin Nanosuspensions for Elucidation of Aggregation State and Stabilization Mechanisms. Li M; Alvarez P; Orbe P; Bilgili E AAPS PharmSciTech; 2018 May; 19(4):1789-1801. PubMed ID: 29603084 [TBL] [Abstract][Full Text] [Related]
7. Miconazole nanosuspensions: Influence of formulation variables on particle size reduction and physical stability. Cerdeira AM; Mazzotti M; Gander B Int J Pharm; 2010 Aug; 396(1-2):210-8. PubMed ID: 20600732 [TBL] [Abstract][Full Text] [Related]
8. Simultaneous quantification of polymeric and surface active stabilizers of nanosuspensions by using near-infrared spectroscopy. Cerdeira AM; Werner IA; Mazzotti M; Gander B Drug Dev Ind Pharm; 2012 Nov; 38(11):1360-70. PubMed ID: 22296216 [TBL] [Abstract][Full Text] [Related]
9. Process parameter dependent growth phenomena of naproxen nanosuspension manufactured by wet media milling. Bitterlich A; Laabs C; Krautstrunk I; Dengler M; Juhnke M; Grandeury A; Bunjes H; Kwade A Eur J Pharm Biopharm; 2015 May; 92():171-9. PubMed ID: 25766272 [TBL] [Abstract][Full Text] [Related]
10. Formulation, preparation, and evaluation of novel orally disintegrating tablets containing taste-masked naproxen sodium granules and naratriptan hydrochloride. Stange U; Führling C; Gieseler H J Pharm Sci; 2014 Apr; 103(4):1233-45. PubMed ID: 24532095 [TBL] [Abstract][Full Text] [Related]
11. Wet milling induced physical and chemical instabilities of naproxen nano-crystalline suspensions. Kumar S; Burgess DJ Int J Pharm; 2014 May; 466(1-2):223-32. PubMed ID: 24614581 [TBL] [Abstract][Full Text] [Related]
12. Redispersible fast dissolving nanocomposite microparticles of poorly water-soluble drugs. Bhakay A; Azad M; Bilgili E; Dave R Int J Pharm; 2014 Jan; 461(1-2):367-79. PubMed ID: 24333905 [TBL] [Abstract][Full Text] [Related]
13. Effective polymeric dispersants for vacuum, convection and freeze drying of drug nanosuspensions. Kim S; Lee J Int J Pharm; 2010 Sep; 397(1-2):218-24. PubMed ID: 20637852 [TBL] [Abstract][Full Text] [Related]
14. Food proteins as novel nanosuspension stabilizers for poorly water-soluble drugs. He W; Lu Y; Qi J; Chen L; Hu F; Wu W Int J Pharm; 2013 Jan; 441(1-2):269-78. PubMed ID: 23194889 [TBL] [Abstract][Full Text] [Related]
15. Is the amorphous fraction of a dried nanosuspension caused by milling or by drying? A case study with Naproxen and Cinnarizine. Kayaert P; Van den Mooter G Eur J Pharm Biopharm; 2012 Aug; 81(3):650-6. PubMed ID: 22579733 [TBL] [Abstract][Full Text] [Related]
16. A comparative study of top-down and bottom-up approaches for the preparation of micro/nanosuspensions. Verma S; Gokhale R; Burgess DJ Int J Pharm; 2009 Oct; 380(1-2):216-22. PubMed ID: 19596059 [TBL] [Abstract][Full Text] [Related]
17. Nanosuspensions of a poorly soluble investigational molecule ODM-106: Impact of milling bead diameter and stabilizer concentration. Singhal M; Baumgartner A; Turunen E; van Veen B; Hirvonen J; Peltonen L Int J Pharm; 2020 Sep; 587():119636. PubMed ID: 32659405 [TBL] [Abstract][Full Text] [Related]
18. Tea saponins as natural stabilizers for the production of hesperidin nanosuspensions. Long J; Song J; Zhang X; Deng M; Xie L; Zhang L; Li X Int J Pharm; 2020 Jun; 583():119406. PubMed ID: 32387309 [TBL] [Abstract][Full Text] [Related]
19. Can spray freeze-drying improve the re-dispersion of crystalline nanoparticles of pure naproxen? Braig V; Konnerth C; Peukert W; Lee G Int J Pharm; 2019 Jun; 564():293-298. PubMed ID: 31022500 [TBL] [Abstract][Full Text] [Related]
20. Study of Rheology and Polymer Adsorption Onto Drug Nanoparticles in Pharmaceutical Suspensions Produced by Nanomilling. Negrini R; Aleandri S; Kuentz M J Pharm Sci; 2017 Nov; 106(11):3395-3401. PubMed ID: 28732711 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]