These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 18036786)

  • 41. Smaug, a novel RNA-binding protein that operates a translational switch in Drosophila.
    Dahanukar A; Walker JA; Wharton RP
    Mol Cell; 1999 Aug; 4(2):209-18. PubMed ID: 10488336
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Temporal and spatial control of germ-plasm RNAs.
    Rangan P; DeGennaro M; Jaime-Bustamante K; Coux RX; Martinho RG; Lehmann R
    Curr Biol; 2009 Jan; 19(1):72-7. PubMed ID: 19110432
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The role of mitochondrial rRNAs and nanos protein in germline formation in Drosophila embryos.
    Kobayashi S; Sato K; Hayashi Y
    Zoolog Sci; 2005 Sep; 22(9):943-54. PubMed ID: 16219975
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Smaug recruits the CCR4/POP2/NOT deadenylase complex to trigger maternal transcript localization in the early Drosophila embryo.
    Semotok JL; Cooperstock RL; Pinder BD; Vari HK; Lipshitz HD; Smibert CA
    Curr Biol; 2005 Feb; 15(4):284-94. PubMed ID: 15723788
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Germ-plasm specification and germline development in the parthenogenetic pea aphid Acyrthosiphon pisum: Vasa and Nanos as markers.
    Chang CC; Lee WC; Cook CE; Lin GW; Chang T
    Int J Dev Biol; 2006; 50(4):413-21. PubMed ID: 16525937
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Drosophila virilis oskar transgenes direct body patterning but not pole cell formation or maintenance of mRNA localization in D. melanogaster.
    Webster PJ; Suen J; Macdonald PM
    Development; 1994 Jul; 120(7):2027-37. PubMed ID: 7925007
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Drosophila tudor is essential for polar granule assembly and pole cell specification, but not for posterior patterning.
    Thomson T; Lasko P
    Genesis; 2004 Nov; 40(3):164-70. PubMed ID: 15495201
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Xcat2 RNA is a translationally sequestered germ plasm component in Xenopus.
    MacArthur H; Bubunenko M; Houston DW; King ML
    Mech Dev; 1999 Jun; 84(1-2):75-88. PubMed ID: 10473122
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Translational repression of gurken mRNA in the Drosophila oocyte requires the hnRNP Squid in the nurse cells.
    Cáceres L; Nilson LA
    Dev Biol; 2009 Feb; 326(2):327-34. PubMed ID: 19100729
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Poly(ADP-Ribosyl)ation of hnRNP A1 Protein Controls Translational Repression in Drosophila.
    Ji Y; Tulin AV
    Mol Cell Biol; 2016 Oct; 36(19):2476-86. PubMed ID: 27402862
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Translational regulation of oskar mRNA by bruno, an ovarian RNA-binding protein, is essential.
    Kim-Ha J; Kerr K; Macdonald PM
    Cell; 1995 May; 81(3):403-12. PubMed ID: 7736592
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Nanos and pumilio establish embryonic polarity in Drosophila by promoting posterior deadenylation of hunchback mRNA.
    Wreden C; Verrotti AC; Schisa JA; Lieberfarb ME; Strickland S
    Development; 1997 Aug; 124(15):3015-23. PubMed ID: 9247343
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Germ Granule Evolution Provides Mechanistic Insight into Drosophila Germline Development.
    Doyle DA; Burian FN; Aharoni B; Klinder AJ; Menzel MM; Nifras GCC; Shabazz-Henry AL; Palma BU; Hidalgo GA; Sottolano CJ; Ortega BM; Niepielko MG
    Mol Biol Evol; 2023 Aug; 40(8):. PubMed ID: 37527522
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The germ cell-less gene product: a posteriorly localized component necessary for germ cell development in Drosophila.
    Jongens TA; Hay B; Jan LY; Jan YN
    Cell; 1992 Aug; 70(4):569-84. PubMed ID: 1380406
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Requirement for Drosophila cytoplasmic tropomyosin in oskar mRNA localization.
    Erdélyi M; Michon AM; Guichet A; Glotzer JB; Ephrussi A
    Nature; 1995 Oct; 377(6549):524-7. PubMed ID: 7566149
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A common translational control mechanism functions in axial patterning and neuroendocrine signaling in Drosophila.
    Clark IE; Dobi KC; Duchow HK; Vlasak AN; Gavis ER
    Development; 2002 Jul; 129(14):3325-34. PubMed ID: 12091303
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Orb and a long poly(A) tail are required for efficient oskar translation at the posterior pole of the Drosophila oocyte.
    Castagnetti S; Ephrussi A
    Development; 2003 Mar; 130(5):835-43. PubMed ID: 12538512
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Maternal and zygotic expression of a nanos-class gene in the leech Helobdella robusta: primordial germ cells arise from segmental mesoderm.
    Kang D; Pilon M; Weisblat DA
    Dev Biol; 2002 May; 245(1):28-41. PubMed ID: 11969253
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Control of oskar mRNA translation by Bruno in a novel cell-free system from Drosophila ovaries.
    Castagnetti S; Hentze MW; Ephrussi A; Gebauer F
    Development; 2000 Mar; 127(5):1063-8. PubMed ID: 10662645
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Identification of cis-acting sequences that control nanos RNA localization.
    Gavis ER; Curtis D; Lehmann R
    Dev Biol; 1996 May; 176(1):36-50. PubMed ID: 8654893
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.