BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 18037245)

  • 1. Suppression of the inducible form of nitric oxide synthase prior to traumatic brain injury improves cytochrome c oxidase activity and normalizes cellular energy levels.
    Hüttemann M; Lee I; Kreipke CW; Petrov T
    Neuroscience; 2008 Jan; 151(1):148-54. PubMed ID: 18037245
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative detection of the expression of mitochondrial cytochrome c oxidase subunits mRNA in the cerebral cortex after experimental traumatic brain injury.
    Dai W; Cheng HL; Huang RQ; Zhuang Z; Shi JX
    Brain Res; 2009 Jan; 1251():287-95. PubMed ID: 19063873
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adverse effects of excessive nitric oxide on cytochrome c oxidase in lenses of hereditary cataract UPL rats.
    Nagai N; Ito Y
    Toxicology; 2007 Dec; 242(1-3):7-15. PubMed ID: 17936468
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Selective inhibition of inducible nitric oxide synthase reduces neurological deficit but not cerebral edema following traumatic brain injury.
    Louin G; Marchand-Verrecchia C; Palmier B; Plotkine M; Jafarian-Tehrani M
    Neuropharmacology; 2006 Feb; 50(2):182-90. PubMed ID: 16242164
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Induction of mitochondrial oxidative stress in astrocytes by nitric oxide precedes disruption of energy metabolism.
    Jacobson J; Duchen MR; Hothersall J; Clark JB; Heales SJ
    J Neurochem; 2005 Oct; 95(2):388-95. PubMed ID: 16104850
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neuronal NOS-mediated nitration and inactivation of manganese superoxide dismutase in brain after experimental and human brain injury.
    Bayir H; Kagan VE; Clark RS; Janesko-Feldman K; Rafikov R; Huang Z; Zhang X; Vagni V; Billiar TR; Kochanek PM
    J Neurochem; 2007 Apr; 101(1):168-81. PubMed ID: 17394464
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dysfunction in cytochrome c oxidase caused by excessive nitric oxide in human lens epithelial cells stimulated with interferon-γ and lipopolysaccharide.
    Nagai N; Ito Y
    Curr Eye Res; 2012 Oct; 37(10):889-97. PubMed ID: 22632269
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Traumatic brain injury-induced changes in gene expression and functional activity of mitochondrial cytochrome C oxidase.
    Harris LK; Black RT; Golden KM; Reeves TM; Povlishock JT; Phillips LL
    J Neurotrauma; 2001 Oct; 18(10):993-1009. PubMed ID: 11686499
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mitochondrial dysfunction in a neural cell model of spinal muscular atrophy.
    Acsadi G; Lee I; Li X; Khaidakov M; Pecinova A; Parker GC; Hüttemann M
    J Neurosci Res; 2009 Sep; 87(12):2748-56. PubMed ID: 19437551
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Melatonin counteracts inducible mitochondrial nitric oxide synthase-dependent mitochondrial dysfunction in skeletal muscle of septic mice.
    Escames G; López LC; Tapias V; Utrilla P; Reiter RJ; Hitos AB; León J; Rodríguez MI; Acuña-Castroviejo D
    J Pineal Res; 2006 Jan; 40(1):71-8. PubMed ID: 16313501
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Increased xanthine oxidase activity after traumatic brain injury in rats.
    Solaroglu I; Okutan O; Kaptanoglu E; Beskonakli E; Kilinc K
    J Clin Neurosci; 2005 Apr; 12(3):273-5. PubMed ID: 15851081
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Upregulation of nitric oxide synthase II contributes to apoptotic cell death in the hippocampal CA3 subfield via a cytochrome c/caspase-3 signaling cascade following induction of experimental temporal lobe status epilepticus in the rat.
    Chuang YC; Chen SD; Lin TK; Liou CW; Chang WN; Chan SH; Chang AY
    Neuropharmacology; 2007 Apr; 52(5):1263-73. PubMed ID: 17336342
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inducible nitric oxide synthase up-regulation and mitochondrial glutathione depletion mediate cyanide-induced necrosis in mesencephalic cells.
    Prabhakaran K; Li L; Borowitz JL; Isom GE
    J Neurosci Res; 2006 Oct; 84(5):1003-11. PubMed ID: 16933320
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modulation of brain mitochondrial function by deprenyl.
    Czerniczyniec A; Bustamante J; Lores-Arnaiz S
    Neurochem Int; 2006 Feb; 48(3):235-41. PubMed ID: 16289465
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cortical calcium increase following traumatic brain injury represents a pitfall in the evaluation of Ca2+-independent NOS activity.
    Louin G; Besson VC; Royo NC; Bonnefont-Rousselot D; Marchand-Verrecchia C; Plotkine M; Jafarian-Tehrani M
    J Neurosci Methods; 2004 Sep; 138(1-2):73-9. PubMed ID: 15325114
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nitric oxide, cytochrome C oxidase, and the cellular response to hypoxia.
    Taylor CT; Moncada S
    Arterioscler Thromb Vasc Biol; 2010 Apr; 30(4):643-7. PubMed ID: 19713530
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ketogenic diet reduces cytochrome c release and cellular apoptosis following traumatic brain injury in juvenile rats.
    Hu ZG; Wang HD; Jin W; Yin HX
    Ann Clin Lab Sci; 2009; 39(1):76-83. PubMed ID: 19201746
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Attenuation of cardiac mitochondrial dysfunction by melatonin in septic mice.
    Escames G; López LC; Ortiz F; López A; García JA; Ros E; Acuña-Castroviejo D
    FEBS J; 2007 Apr; 274(8):2135-47. PubMed ID: 17371545
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mitochondrial dysfunction early after traumatic brain injury in immature rats.
    Robertson CL; Saraswati M; Fiskum G
    J Neurochem; 2007 Jun; 101(5):1248-57. PubMed ID: 17403141
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of mitochondrial gene expression by energy demand in neural cells.
    Mehrabian Z; Liu LI; Fiskum G; Rapoport SI; Chandrasekaran K
    J Neurochem; 2005 May; 93(4):850-60. PubMed ID: 15857388
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.