BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 18037377)

  • 1. Reversible dissociation of flavin mononucleotide from the mammalian membrane-bound NADH: ubiquinone oxidoreductase (complex I).
    Gostimskaya IS; Grivennikova VG; Cecchini G; Vinogradov AD
    FEBS Lett; 2007 Dec; 581(30):5803-6. PubMed ID: 18037377
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Slow active/inactive transition of the mitochondrial NADH-ubiquinone reductase.
    Kotlyar AB; Vinogradov AD
    Biochim Biophys Acta; 1990 Aug; 1019(2):151-8. PubMed ID: 2119805
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of the inhibitory action of natural rotenone and its stereoisomers with various NADH-ubiquinone reductases.
    Ueno H; Miyoshi H; Ebisui K; Iwamura H
    Eur J Biochem; 1994 Oct; 225(1):411-7. PubMed ID: 7925463
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The flavoprotein subcomplex of complex I (NADH:ubiquinone oxidoreductase) from bovine heart mitochondria: insights into the mechanisms of NADH oxidation and NAD+ reduction from protein film voltammetry.
    Barker CD; Reda T; Hirst J
    Biochemistry; 2007 Mar; 46(11):3454-64. PubMed ID: 17323923
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Resonance Raman spectra of the FMN of the bovine heart NADH: ubiquinone oxidoreductase, the largest membrane protein in the mitochondrial respiratory system.
    Sugiyama H; Nakatsubo R; Yamaguchi S; Ogura T; Shinzawa-Itoh K; Yoshikawa S
    J Bioenerg Biomembr; 2007 Apr; 39(2):145-8. PubMed ID: 17436066
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Redox-dependent change of nucleotide affinity to the active site of the mammalian complex I.
    Grivennikova VG; Kotlyar AB; Karliner JS; Cecchini G; Vinogradov AD
    Biochemistry; 2007 Sep; 46(38):10971-8. PubMed ID: 17760425
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bovine heart NADH-ubiquinone oxidoreductase contains one molecule of ubiquinone with ten isoprene units as one of the cofactors.
    Shinzawa-Itoh K; Seiyama J; Terada H; Nakatsubo R; Naoki K; Nakashima Y; Yoshikawa S
    Biochemistry; 2010 Jan; 49(3):487-92. PubMed ID: 19961238
    [TBL] [Abstract][Full Text] [Related]  

  • 8. NADH- and NADPH-dependent formation of superoxide anions by bovine heart submitochondrial particles and NADH-ubiquinone reductase preparation.
    Takeshige K; Minakami S
    Biochem J; 1979 Apr; 180(1):129-35. PubMed ID: 39543
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reduction of hydrophilic ubiquinones by the flavin in mitochondrial NADH:ubiquinone oxidoreductase (Complex I) and production of reactive oxygen species.
    King MS; Sharpley MS; Hirst J
    Biochemistry; 2009 Mar; 48(9):2053-62. PubMed ID: 19220002
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reactions of the flavin mononucleotide in complex I: a combined mechanism describes NADH oxidation coupled to the reduction of APAD+, ferricyanide, or molecular oxygen.
    Birrell JA; Yakovlev G; Hirst J
    Biochemistry; 2009 Dec; 48(50):12005-13. PubMed ID: 19899808
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Generation of superoxide by the mitochondrial Complex I.
    Grivennikova VG; Vinogradov AD
    Biochim Biophys Acta; 2006; 1757(5-6):553-61. PubMed ID: 16678117
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Selective inhibition of mitochondrial NADH-ubiquinone reductase (Complex I) by an alkyl polyoxyethylene ether.
    Suzuki H; Wakai M; Ozawa T
    Biochem Int; 1986 Aug; 13(2):351-7. PubMed ID: 3094534
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Triton X-100 as a specific inhibitor of the mammalian NADH-ubiquinone oxidoreductase (Complex I).
    Ushakova AV; Grivennikova VG; Ohnishi T; Vinogradov AD
    Biochim Biophys Acta; 1999 Jan; 1409(3):143-53. PubMed ID: 9878712
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Resolution of NADH:ubiquinone oxidoreductase from bovine heart mitochondria into two subcomplexes, one of which contains the redox centers of the enzyme.
    Finel M; Skehel JM; Albracht SP; Fearnley IM; Walker JE
    Biochemistry; 1992 Nov; 31(46):11425-34. PubMed ID: 1332758
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermodynamic analysis of flavin in mitochondrial NADH:ubiquinone oxidoreductase (complex I).
    Sled VD; Rudnitzky NI; Hatefi Y; Ohnishi T
    Biochemistry; 1994 Aug; 33(33):10069-75. PubMed ID: 8060976
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of Ca2+ ions on the slow active/inactive transition of the mitochondrial NADH-ubiquinone reductase.
    Kotlyar AB; Sled VD; Vinogradov AD
    Biochim Biophys Acta; 1992 Jan; 1098(2):144-50. PubMed ID: 1730007
    [TBL] [Abstract][Full Text] [Related]  

  • 17. HQNO-sensitive NADH:quinone oxidoreductase of Bacillus cereus KCTC 3674.
    Kang J; Kim YJ
    J Biochem Mol Biol; 2007 Jan; 40(1):53-7. PubMed ID: 17244482
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Generation of superoxide anion by the NADH dehydrogenase of bovine heart mitochondria.
    Turrens JF; Boveris A
    Biochem J; 1980 Nov; 191(2):421-7. PubMed ID: 6263247
    [TBL] [Abstract][Full Text] [Related]  

  • 19. FMN site-independent energy-linked reverse electron transfer in mitochondrial respiratory complex I.
    Gladyshev GV; Grivennikova VG; Vinogradov AD
    FEBS Lett; 2018 Jul; 592(13):2213-2219. PubMed ID: 29851085
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cytotoxic effect of thiacarbocyanine dyes on human colon carcinoma cells and inhibition of bovine heart mitochondrial NADH-ubiquinone reductase activity via a rotenone-type mechanism by two of the dyes.
    Anderson WM; Delinck DL; Benninger L; Wood JM; Smiley ST; Chen LB
    Biochem Pharmacol; 1993 Feb; 45(3):691-6. PubMed ID: 8442768
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.