These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

271 related articles for article (PubMed ID: 18037423)

  • 1. Investigation of salt properties with electro-acoustic measurements and their effect on dynamic binding capacity in hydrophobic interaction chromatography.
    Müller E; Faude A
    J Chromatogr A; 2008 Jan; 1177(2):215-25. PubMed ID: 18037423
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Solubility and binding properties of PEGylated lysozyme derivatives with increasing molecular weight on hydrophobic-interaction chromatographic resins.
    Müller E; Josic D; Schröder T; Moosmann A
    J Chromatogr A; 2010 Jul; 1217(28):4696-703. PubMed ID: 20570270
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-throughput protein precipitation and hydrophobic interaction chromatography: salt effects and thermodynamic interrelation.
    Nfor BK; Hylkema NN; Wiedhaup KR; Verhaert PD; van der Wielen LA; Ottens M
    J Chromatogr A; 2011 Dec; 1218(49):8958-73. PubMed ID: 21868020
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessment of COMT isolation by HIC using a dual salt system and low temperature.
    Nunes VS; Bonifácio MJ; Queiroz JA; Passarinha LA
    Biomed Chromatogr; 2010 Aug; 24(8):858-62. PubMed ID: 20024892
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Experimental study and modeling of the influence of mixed electrolytes on adsorption of macromolecules on a hydrophobic resin.
    Werner A; Hasse H
    J Chromatogr A; 2013 Nov; 1315():135-44. PubMed ID: 24099781
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of mixed electrolytes and pH on adsorption of bovine serum albumin in hydrophobic interaction chromatography.
    Hackemann E; Hasse H
    J Chromatogr A; 2017 Oct; 1521():73-79. PubMed ID: 28947205
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Suitability of commercial hydrophobic interaction sorbents for temperature-controlled protein liquid chromatography under low salt conditions.
    Müller TK; Franzreb M
    J Chromatogr A; 2012 Oct; 1260():88-96. PubMed ID: 22954746
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydrophobic interaction chromatography of proteins. IV. Protein adsorption capacity and transport in preparative mode.
    To BC; Lenhoff AM
    J Chromatogr A; 2011 Jan; 1218(3):427-40. PubMed ID: 21176838
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protein-protein interactions and reduced excluded volume increase dynamic binding capacity of dual salt systems in hydrophobic interaction chromatography.
    Jakob LA; Beyer B; Janeiro Ferreira C; Lingg N; Jungbauer A; Tscheließnig R
    J Chromatogr A; 2021 Jul; 1649():462231. PubMed ID: 34038776
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of ammonium sulfate and sodium chloride concentration on PEG/protein liquid-liquid phase separation.
    Dumetz AC; Lewus RA; Lenhoff AM; Kaler EW
    Langmuir; 2008 Sep; 24(18):10345-51. PubMed ID: 18702478
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of standard and new generation hydrophobic interaction chromatography resins in the monoclonal antibody purification process.
    Chen J; Tetrault J; Ley A
    J Chromatogr A; 2008 Jan; 1177(2):272-81. PubMed ID: 17709111
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The step-wise framework to design a chromatography-based hydrophobicity assay for viral particles.
    Johnson SA; Walsh A; Brown MR; Lute SC; Roush DJ; Burnham MS; Brorson KA
    J Chromatogr B Analyt Technol Biomed Life Sci; 2017 Sep; 1061-1062():430-437. PubMed ID: 28818800
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Purification of monoclonal antibodies by hydrophobic interaction chromatography under no-salt conditions.
    Ghose S; Tao Y; Conley L; Cecchini D
    MAbs; 2013; 5(5):795-800. PubMed ID: 23884181
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ion exclusion and electrokinetic effects resulting from electro-osmotic flow of salt solutions in charged silica nanopores.
    Haria NR; Lorenz CD
    Phys Chem Chem Phys; 2012 May; 14(17):5935-44. PubMed ID: 22441317
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Separation of proteins by hydrophobic interaction chromatography at low salt concentration.
    Kato Y; Nakamura K; Kitamura T; Moriyama H; Hasegawa M; Sasaki H
    J Chromatogr A; 2002 Sep; 971(1-2):143-9. PubMed ID: 12350109
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydrophobic interaction chromatography for purification of monoPEGylated RNase A.
    Mayolo-Deloisa K; Lienqueo ME; Andrews B; Rito-Palomares M; Asenjo JA
    J Chromatogr A; 2012 Jun; 1242():11-6. PubMed ID: 22579360
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fractionation and recovery of whey proteins by hydrophobic interaction chromatography.
    Santos MJ; Teixeira JA; Rodrigues LR
    J Chromatogr B Analyt Technol Biomed Life Sci; 2011 Mar; 879(7-8):475-9. PubMed ID: 21292570
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mixed electrolytes in hydrophobic interaction chromatography.
    Müller E; Vajda J; Josic D; Schröder T; Dabre R; Frey T
    J Sep Sci; 2013 Apr; 36(8):1327-34. PubMed ID: 23520000
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Osmotic second virial cross-coefficient measurements for binary combination of lysozyme, ovalbumin, and α-amylase in salt solutions.
    Mehta CM; White ET; Litster JD
    Biotechnol Prog; 2013; 29(5):1203-11. PubMed ID: 23804362
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of binding pH and protein solubility on the dynamic binding capacity in hydrophobic interaction chromatography.
    Baumann P; Baumgartner K; Hubbuch J
    J Chromatogr A; 2015 May; 1396():77-85. PubMed ID: 25911386
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.