BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 18037450)

  • 21. Lack of evidence for the role of gut microbiota in PAH biodegradation by the polychaete Capitella teleta.
    Jang J; Forbes VE; Sadowsky MJ
    Sci Total Environ; 2020 Jul; 725():138356. PubMed ID: 32302836
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Biodegradation of 17alpha-methyltestosterone and isolation of MT-degrading bacterium from sediment of Nile tilapia masculinization pond.
    Homklin S; Wattanodorn T; Ong SK; Limpiyakorn T
    Water Sci Technol; 2009; 59(2):261-5. PubMed ID: 19182335
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Bacteria and organic matter dynamics during a bioremediation treatment of organic-rich harbour sediments.
    Fabiano M; Marrale D; Misic C
    Mar Pollut Bull; 2003 Sep; 46(9):1164-73. PubMed ID: 12932498
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Investigation of the fate and effects of acetyl cedrene on Capitella teleta and sediment bacterial community.
    Ellegaard-Petersen L; Selck H; Priemé A; Salvito D; Forbes V
    Ecotoxicology; 2010 Aug; 19(6):1046-58. PubMed ID: 20339914
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Metabolism of the polycyclic aromatic hydrocarbon fluoranthene by the polychaete Capitella capitata species I.
    Forbes VE; Andreassen MS; Christensen L
    Environ Toxicol Chem; 2001 May; 20(5):1012-21. PubMed ID: 11337863
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Bacterial community shifts in organically perturbed sediments.
    Bissett A; Burke C; Cook PL; Bowman JP
    Environ Microbiol; 2007 Jan; 9(1):46-60. PubMed ID: 17227411
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Persistence and biodegradation of kerosene in high-arctic intertidal sediment.
    Røberg S; Stormo SK; Landfald B
    Mar Environ Res; 2007 Oct; 64(4):417-28. PubMed ID: 17493677
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Sediment-water exchange of Vibrio sp. and fecal indicator bacteria: implications for persistence and transport in the Neuse River Estuary, North Carolina, USA.
    Fries JS; Characklis GW; Noble RT
    Water Res; 2008 Feb; 42(4-5):941-50. PubMed ID: 17945328
    [TBL] [Abstract][Full Text] [Related]  

  • 29. 2,4,6-Trinitrotoluene mineralization and bacterial production rates of natural microbial assemblages from coastal sediments.
    Montgomery MT; Coffin RB; Boyd TJ; Smith JP; Walker SE; Osburn CL
    Environ Pollut; 2011 Dec; 159(12):3673-80. PubMed ID: 21839558
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The effects of teflubenzuron on mortality, physiology and accumulation in Capitella sp.
    Fang J; Samuelsen OB; Strand Ø; Hansen PK; Jansen H
    Ecotoxicol Environ Saf; 2020 Oct; 203():111029. PubMed ID: 32888609
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Sediment microbes and biofilms increase the bioavailability of chlorpyrifos in Chironomus riparius (Chironomidae, Diptera).
    Widenfalk A; Lundqvist A; Goedkoop W
    Ecotoxicol Environ Saf; 2008 Oct; 71(2):490-7. PubMed ID: 18093655
    [TBL] [Abstract][Full Text] [Related]  

  • 32. An investigation into the effects of silver nanoparticles on antibiotic resistance of naturally occurring bacteria in an estuarine sediment.
    Mühling M; Bradford A; Readman JW; Somerfield PJ; Handy RD
    Mar Environ Res; 2009 Dec; 68(5):278-83. PubMed ID: 19665221
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Biotransformation of dissolved and sediment-bound fluoranthene in the polychaete, Capitella sp. I.
    Selck H; Palmqvist A; Forbes VE
    Environ Toxicol Chem; 2003 Oct; 22(10):2364-74. PubMed ID: 14552001
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Electron shuttling via humic acids in microbial iron(III) reduction in a freshwater sediment.
    Kappler A; Benz M; Schink B; Brune A
    FEMS Microbiol Ecol; 2004 Jan; 47(1):85-92. PubMed ID: 19712349
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Screening and function analysis of a cyclohexanone-degrading bacterium CN1 from deep sea sediment].
    Li H; Shao ZZ
    Wei Sheng Wu Xue Bao; 2007 Oct; 47(5):828-33. PubMed ID: 18062257
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Benthic bacterial response to variable estuarine water inputs.
    Manini E; Luna GM; Danovaro R
    FEMS Microbiol Ecol; 2004 Nov; 50(3):185-94. PubMed ID: 19712359
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Polychaete burrows harbour distinct microbial communities in oil-contaminated coastal sediments.
    Taylor JD; Cunliffe M
    Environ Microbiol Rep; 2015 Aug; 7(4):606-13. PubMed ID: 25858418
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Gradients of coastal fish farm effluents and their effect on coral reef microbes.
    Garren M; Smriga S; Azam F
    Environ Microbiol; 2008 Sep; 10(9):2299-312. PubMed ID: 18557772
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Phytoremediation of shallow organically enriched marine sediments using benthic microalgae.
    Yamamoto T; Goto I; Kawaguchi O; Minagawa K; Ariyoshi E; Matsuda O
    Mar Pollut Bull; 2008; 57(1-5):108-15. PubMed ID: 18048063
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Spatio-temporal changes of marine macrobenthic community in sub-tropical waters upon recovery from eutrophication. I. Sediment quality and community structure.
    Shin PK; Lam NW; Wu RS; Qian PY; Cheung SG
    Mar Pollut Bull; 2008 Feb; 56(2):282-96. PubMed ID: 18061627
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.