BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 18037594)

  • 1. Strain-dependence of age-related cochlear hearing loss in wild and domesticated Mongolian gerbils.
    Eckrich T; Foeller E; Stuermer IW; Gaese BH; Kössl M
    Hear Res; 2008 Jan; 235(1-2):72-9. PubMed ID: 18037594
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Factors affecting sensitivity of distortion-product otoacoustic emissions to ototoxic hearing loss.
    Reavis KM; Phillips DS; Fausti SA; Gordon JS; Helt WJ; Wilmington D; Bratt GW; Konrad-Martin D
    Ear Hear; 2008 Dec; 29(6):875-93. PubMed ID: 18753950
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acoustic startle and prepulse inhibition in the Mongolian gerbil.
    Gaese BH; Nowotny M; Pilz PK
    Physiol Behav; 2009 Oct; 98(4):460-6. PubMed ID: 19660482
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Determining the cause of hearing loss: differential diagnosis using a comparison of audiometric and otoacoustic emission responses.
    Mills DM
    Ear Hear; 2006 Oct; 27(5):508-25. PubMed ID: 16957501
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of cochlear hearing disorders: normative distortion product otoacoustic emission measurements.
    Mills DM; Feeney MP; Gates GA
    Ear Hear; 2007 Dec; 28(6):778-92. PubMed ID: 17982366
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hearing loss in vestibular schwannomas: analysis of cochlear function by means of distortion-product otoacoustic emissions.
    Ferri GG; Modugno GC; Calbucci F; Ceroni AR; Pirodda A
    Auris Nasus Larynx; 2009 Dec; 36(6):644-8. PubMed ID: 19419826
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Early experience and domestication affect auditory discrimination learning, open field behaviour and brain size in wild Mongolian gerbils and domesticated laboratory gerbils (Meriones unguiculatus forma domestica).
    Stuermer IW; Wetzel W
    Behav Brain Res; 2006 Oct; 173(1):11-21. PubMed ID: 16846650
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Contralateral acoustic stimulation modulates low-frequency biasing of DPOAE: efferent influence on cochlear amplifier operating state?
    Abel C; Wittekindt A; Kössl M
    J Neurophysiol; 2009 May; 101(5):2362-71. PubMed ID: 19279155
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sensitive response to low-frequency cochlear distortion products in the auditory midbrain.
    Abel C; Kössl M
    J Neurophysiol; 2009 Mar; 101(3):1560-74. PubMed ID: 19036870
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Distortion product otoacoustic emissions in an industrial setting.
    Korres GS; Balatsouras DG; Tzagaroulakis A; Kandiloros D; Ferekidou E; Korres S
    Noise Health; 2009; 11(43):103-10. PubMed ID: 19414930
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Distortion product otoacoustic emissions during the first year in term infants: a longitudinal study.
    Zang Z; Jiang ZD
    Brain Dev; 2007 Jul; 29(6):346-51. PubMed ID: 17113742
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The expression of apoptosis-related proteins in the aged cochlea of Mongolian gerbils.
    Alam SA; Oshima T; Suzuki M; Kawase T; Takasaka T; Ikeda K
    Laryngoscope; 2001 Mar; 111(3):528-34. PubMed ID: 11224787
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Auditory efferent feedback system deficits precede age-related hearing loss: contralateral suppression of otoacoustic emissions in mice.
    Zhu X; Vasilyeva ON; Kim S; Jacobson M; Romney J; Waterman MS; Tuttle D; Frisina RD
    J Comp Neurol; 2007 Aug; 503(5):593-604. PubMed ID: 17559088
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Otoacoustic detection of risk of early hearing loss in ears with normal audiograms: a 3-year follow-up study.
    Job A; Raynal M; Kossowski M; Studler M; Ghernaouti C; Baffioni-Venturi A; Roux A; Darolles C; Guelorget A
    Hear Res; 2009 May; 251(1-2):10-6. PubMed ID: 19249340
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Behavioral measures of vowel sensitivity in Mongolian gerbils (Meriones unguiculatus): effects of age and genetic origin.
    Sinnott JM; Street SL; Mosteller KW; Williamson TL
    Hear Res; 1997 Oct; 112(1-2):235-46. PubMed ID: 9367244
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Irreversible cochlear damage in myasthenia gravis -- otoacoustic emission analysis.
    Hamed SA; Elattar AM; Hamed EA
    Acta Neurol Scand; 2006 Jan; 113(1):46-54. PubMed ID: 16367899
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Auditory steady-state responses to bone conduction stimuli in children with hearing loss.
    Swanepoel de W; Ebrahim S; Friedland P; Swanepoel A; Pottas L
    Int J Pediatr Otorhinolaryngol; 2008 Dec; 72(12):1861-71. PubMed ID: 18963045
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Distortion product otoacoustic emission findings in Behçet's disease and rheumatoid arthritis.
    Bayazit YA; Yilmaz M; Gunduz B; Altinyay S; Kemaloglu YK; Onder M; Gurer MA
    ORL J Otorhinolaryngol Relat Spec; 2007; 69(4):233-8. PubMed ID: 17409782
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Corticofugal Modulation of DPOAEs in Gerbils.
    Jäger K; Kössl M
    Hear Res; 2016 Feb; 332():61-72. PubMed ID: 26619750
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Test-retest repeatability of distortion product otoacoustic emissions.
    Wagner W; Heppelmann G; Vonthein R; Zenner HP
    Ear Hear; 2008 Jun; 29(3):378-91. PubMed ID: 18382378
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.