These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 18037666)

  • 1. Computing competition for light in the GREENLAB model of plant growth: a contribution to the study of the effects of density on resource acquisition and architectural development.
    Cournède PH; Mathieu A; Houllier F; Barthélémy D; de Reffye P
    Ann Bot; 2008 May; 101(8):1207-19. PubMed ID: 18037666
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Parameter optimization and field validation of the functional-structural model GREENLAB for maize at different population densities.
    Ma Y; Wen M; Guo Y; Li B; Cournède PH; de Reffye P
    Ann Bot; 2008 May; 101(8):1185-94. PubMed ID: 17921525
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Does the structure-function model GREENLAB deal with crop phenotypic plasticity induced by plant spacing? A case study on tomato.
    Dong Q; Louarn G; Wang Y; Barczi JF; de Reffye P
    Ann Bot; 2008 May; 101(8):1195-206. PubMed ID: 18199575
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coupling individual kernel-filling processes with source-sink interactions into GREENLAB-Maize.
    Ma Y; Chen Y; Zhu J; Meng L; Guo Y; Li B; Hoogenboom G
    Ann Bot; 2018 Apr; 121(5):961-973. PubMed ID: 29447375
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative genetics and functional-structural plant growth models: simulation of quantitative trait loci detection for model parameters and application to potential yield optimization.
    Letort V; Mahe P; Cournède PH; de Reffye P; Courtois B
    Ann Bot; 2008 May; 101(8):1243-54. PubMed ID: 17766844
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Early competition shapes maize whole-plant development in mixed stands.
    Zhu J; Vos J; van der Werf W; van der Putten PE; Evers JB
    J Exp Bot; 2014 Feb; 65(2):641-53. PubMed ID: 24307719
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Parameter optimization and field validation of the functional-structural model GREENLAB for maize.
    Guo Y; Ma Y; Zhan Z; Li B; Dingkuhn M; Luquet D; De Reffye P
    Ann Bot; 2006 Feb; 97(2):217-30. PubMed ID: 16390847
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The contribution of phenotypic plasticity to complementary light capture in plant mixtures.
    Zhu J; van der Werf W; Anten NP; Vos J; Evers JB
    New Phytol; 2015 Sep; 207(4):1213-22. PubMed ID: 25898768
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stochastic modelling of tree architecture and biomass allocation: application to teak (Tectona grandis L. f.), a tree species with polycyclic growth and leaf neoformation.
    Tondjo K; Brancheriau L; Sabatier S; Kokutse AD; Kokou K; Jaeger M; de Reffye P; Fourcaud T
    Ann Bot; 2018 Jun; 121(7):1397-1410. PubMed ID: 29596559
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Parameter stability of the functional-structural plant model GREENLAB as affected by variation within populations, among seasons and among growth stages.
    Ma Y; Li B; Zhan Z; Guo Y; Luquet D; de Reffye P; Dingkuhn M
    Ann Bot; 2007 Jan; 99(1):61-73. PubMed ID: 17158141
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The derivation of sink functions of wheat organs using the GREENLAB model.
    Kang M; Evers JB; Vos J; de Reffye P
    Ann Bot; 2008 May; 101(8):1099-108. PubMed ID: 18045794
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Morphological Characteristics of Maize Canopy Development as Affected by Increased Plant Density.
    Song Y; Rui Y; Bedane G; Li J
    PLoS One; 2016; 11(4):e0154084. PubMed ID: 27129101
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exploring ecological significance of tree crown plasticity through three-dimensional modelling.
    Vincent G; Harja D
    Ann Bot; 2008 May; 101(8):1221-31. PubMed ID: 17720977
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A dynamic, architectural plant model simulating resource-dependent growth.
    Yan HP; Kang MZ; de Reffye P; Dingkuhn M
    Ann Bot; 2004 May; 93(5):591-602. PubMed ID: 15056562
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Simulation of the competition for light in forest stands of the same age].
    Kolobov AN; Frisman EY
    Izv Akad Nauk Ser Biol; 2013; (4):463-73. PubMed ID: 24459852
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Can niche plasticity promote biodiversity-productivity relationships through increased complementarity?
    Niklaus PA; Baruffol M; He JS; Ma K; Schmid B
    Ecology; 2017 Apr; 98(4):1104-1116. PubMed ID: 28129429
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The dynamic relationship between plant architecture and competition.
    Ford ED
    Front Plant Sci; 2014; 5():275. PubMed ID: 24987396
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficient modelling of foliage distribution and crown dynamics in monolayer tree species.
    Beyer R
    Theory Biosci; 2017 Dec; 136(3-4):193-197. PubMed ID: 28578464
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stand density, tree social status and water stress influence allocation in height and diameter growth of Quercus petraea (Liebl.).
    Trouvé R; Bontemps JD; Seynave I; Collet C; Lebourgeois F
    Tree Physiol; 2015 Oct; 35(10):1035-46. PubMed ID: 26232785
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparing light interception with stand basal area for predicting tree growth.
    Courbaud B
    Tree Physiol; 2000 Mar; 20(5_6):407-414. PubMed ID: 12651456
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.