These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 18038368)

  • 1. Data analysis and alternative modelling of MITI-I aerobic biodegradation.
    Sedykh A; Klopman G
    SAR QSAR Environ Res; 2007; 18(7-8):693-709. PubMed ID: 18038368
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Linear and nonlinear relationships between biodegradation potential and molecular descriptors/fragments for organic pollutants and a theoretical interpretation.
    He J; Qin W; Zhang X; Wen Y; Su L; Zhao Y
    Sci Total Environ; 2013 Feb; 444():392-400. PubMed ID: 23280297
    [TBL] [Abstract][Full Text] [Related]  

  • 3. External validation of EPIWIN biodegradation models.
    Posthumus R; Traas TP; Peijnenburg WJ; Hulzebos EM
    SAR QSAR Environ Res; 2005; 16(1-2):135-48. PubMed ID: 15844447
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Probabilistic assessment of biodegradability based on metabolic pathways: catabol system.
    Jaworska J; Dimitrov S; Nikolova N; Mekenyan O
    SAR QSAR Environ Res; 2002 Mar; 13(2):307-23. PubMed ID: 12071658
    [TBL] [Abstract][Full Text] [Related]  

  • 5. External validation of the biodegradability prediction model CATABOL using data sets of existing and new chemicals under the Japanese Chemical Substances Control Law.
    Sakuratani Y; Yamada J; Kasai K; Noguchi Y; Nishihara T
    SAR QSAR Environ Res; 2005 Oct; 16(5):403-31. PubMed ID: 16272041
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A kinetic model for predicting biodegradation.
    Dimitrov S; Pavlov T; Nedelcheva D; Reuschenbach P; Silvani M; Bias R; Comber M; Low L; Lee C; Parkerton T; Mekenyan O
    SAR QSAR Environ Res; 2007; 18(5-6):443-57. PubMed ID: 17654334
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitative structure-activity relationship models for prediction of sensory irritants (logRD50) of volatile organic chemicals.
    Luan F; Ma W; Zhang X; Zhang H; Liu M; Hu Z; Fan BT
    Chemosphere; 2006 May; 63(7):1142-53. PubMed ID: 16307788
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prediction of biodegradation from the atom-type electrotopological state indices.
    Huuskonen J
    Environ Toxicol Chem; 2001 Oct; 20(10):2152-7. PubMed ID: 11596743
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation and application of models for the prediction of ready biodegradability in the MITI-I test.
    Rorije E; Loonen H; Müller M; Klopman G; Peijnenburg WJ
    Chemosphere; 1999 Mar; 38(6):1409-17. PubMed ID: 10070729
    [TBL] [Abstract][Full Text] [Related]  

  • 10. QSAR modelling of water quality indices of alkylphenol pollutants.
    Kim JH; Gramatica P; Kim MG; Kim D; Tratnyek PG
    SAR QSAR Environ Res; 2007; 18(7-8):729-43. PubMed ID: 18038370
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative structure-activity relationship models for ready biodegradability of chemicals.
    Mansouri K; Ringsted T; Ballabio D; Todeschini R; Consonni V
    J Chem Inf Model; 2013 Apr; 53(4):867-78. PubMed ID: 23469921
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ligand-based virtual screening and in silico design of new antimalarial compounds using nonstochastic and stochastic total and atom-type quadratic maps.
    Marrero-Ponce Y; Iyarreta-Veitía M; Montero-Torres A; Romero-Zaldivar C; Brandt CA; Avila PE; Kirchgatter K; Machado Y
    J Chem Inf Model; 2005; 45(4):1082-100. PubMed ID: 16045304
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modelling the aerobic degradation of organic wastes based on slowly and rapidly degradable fractions.
    Ponsá S; Puyuelo B; Gea T; Sánchez A
    Waste Manag; 2011 Jul; 31(7):1472-9. PubMed ID: 21397485
    [TBL] [Abstract][Full Text] [Related]  

  • 14. QSAR modeling of anti-invasive activity of organic compounds using structural descriptors.
    Katritzky AR; Kuanar M; Dobchev DA; Vanhoecke BW; Karelson M; Parmar VS; Stevens CV; Bracke ME
    Bioorg Med Chem; 2006 Oct; 14(20):6933-9. PubMed ID: 16908166
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative structure-property relationship for predicting chlorine demand by organic molecules.
    Luilo GB; Cabaniss SE
    Environ Sci Technol; 2010 Apr; 44(7):2503-8. PubMed ID: 20230049
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A segmented principal component analysis-regression approach to quantitative structure-activity relationship modeling.
    Hemmateenejad B; Elyasi M
    Anal Chim Acta; 2009 Jul; 646(1-2):30-8. PubMed ID: 19523553
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prediction of fathead minnow acute toxicity of organic compounds from molecular structure.
    Eldred DV; Weikel CL; Jurs PC; Kaiser KL
    Chem Res Toxicol; 1999 Jul; 12(7):670-8. PubMed ID: 10409408
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biodegradability of nitrogenous compounds under anaerobic conditions and its estimation.
    Hongwei Y; Zhanpeng J; Shaoqi S
    Ecotoxicol Environ Saf; 2006 Feb; 63(2):299-305. PubMed ID: 16677914
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prediction of estrogenicity: validation of a classification model.
    Saliner AG; Netzeva TI; Worth AP
    SAR QSAR Environ Res; 2006 Apr; 17(2):195-223. PubMed ID: 16644558
    [TBL] [Abstract][Full Text] [Related]  

  • 20. TOMOCOMD-CARDD descriptors-based virtual screening of tyrosinase inhibitors: evaluation of different classification model combinations using bond-based linear indices.
    Casañola-Martín GM; Marrero-Ponce Y; Khan MT; Ather A; Sultan S; Torrens F; Rotondo R
    Bioorg Med Chem; 2007 Feb; 15(3):1483-503. PubMed ID: 17110117
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.