BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 18038371)

  • 1. Prediction of acute toxicity of organophosphorus pesticides using topological indices.
    García-Domenech R; Alarcón-Elbal P; Bolas G; Bueno-Marí R; Chordá-Olmos FA; Delacour SA; Mouriño MC; Vidal A; Gálvez J
    SAR QSAR Environ Res; 2007; 18(7-8):745-55. PubMed ID: 18038371
    [TBL] [Abstract][Full Text] [Related]  

  • 2. QSTR of the toxicity of some organophosphorus compounds by using the quantum chemical and topological descriptors.
    Senior SA; Madbouly MD; El massry AM
    Chemosphere; 2011 Sep; 85(1):7-12. PubMed ID: 21757222
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative structure-toxicity relationship study of lethal concentration to tadpole (Bufo vulgaris formosus) for organophosphorous pesticides.
    Yan D; Jiang X; Xu S; Wang L; Bian Y; Yu G
    Chemosphere; 2008 May; 71(10):1809-15. PubMed ID: 18395243
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitative structure-activity relationships for the toxicity of organophosphorus and carbamate pesticides to the Rainbow trout Onchorhyncus mykiss.
    Bermúdez-Saldaña JM; Cronin MT
    Pest Manag Sci; 2006 Sep; 62(9):819-31. PubMed ID: 16763959
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prediction of mammalian toxicity of organophosphorus pesticides from QSTR modeling.
    Devillers J
    SAR QSAR Environ Res; 2004; 15(5-6):501-10. PubMed ID: 15669705
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparisons of acute toxicity of selected chemicals to rainbow trout and rats.
    Delistraty D; Taylor B; Anderson R
    Ecotoxicol Environ Saf; 1998 Mar; 39(3):195-200. PubMed ID: 9570910
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prediction of acute mammalian toxicity of organophosphorus pesticide compounds from molecular structure.
    Eldred DV; Jurs PC
    SAR QSAR Environ Res; 1999; 10(2-3):75-99. PubMed ID: 10491847
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative structure-toxicity relationships of organophosphorous pesticides to fish (Cyprinus carpio).
    Yan D; Jiang X; Yu G; Zhao Z; Bian Y; Wang F
    Chemosphere; 2006 May; 63(5):744-50. PubMed ID: 16246398
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Quantitative Structure Activity Relationship for acute oral toxicity of pesticides on rats: Validation, domain of application and prediction.
    Hamadache M; Benkortbi O; Hanini S; Amrane A; Khaouane L; Si Moussa C
    J Hazard Mater; 2016 Feb; 303():28-40. PubMed ID: 26513561
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Acute toxicity of some nerve agents and pesticides in rats.
    Misik J; Pavlikova R; Cabal J; Kuca K
    Drug Chem Toxicol; 2015 Jan; 38(1):32-6. PubMed ID: 24641243
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A simple approach to the prediction of soil sorption of organophosphorus pesticides.
    Muhire J; Li SS; Yin B; Mi JY; Zhai HL
    J Environ Sci Health B; 2021; 56(6):606-612. PubMed ID: 34162318
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prediction of fathead minnow acute toxicity of organic compounds from molecular structure.
    Eldred DV; Weikel CL; Jurs PC; Kaiser KL
    Chem Res Toxicol; 1999 Jul; 12(7):670-8. PubMed ID: 10409408
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Estimation of reliability of predictions and model applicability domain evaluation in the analysis of acute toxicity (LD50).
    Sazonovas A; Japertas P; Didziapetris R
    SAR QSAR Environ Res; 2010 Jan; 21(1):127-48. PubMed ID: 20373217
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis and quantitative structure-activity relationship (QSAR) study of novel N-arylsulfonyl-3-acylindole arylcarbonyl hydrazone derivatives as nematicidal agents.
    Che Z; Zhang S; Shao Y; Fan L; Xu H; Yu X; Zhi X; Yao X; Zhang R
    J Agric Food Chem; 2013 Jun; 61(24):5696-705. PubMed ID: 23738496
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative structure-activity relationship (QSAR) for insecticides: development of predictive in vivo insecticide activity models.
    Naik PK; Singh T; Singh H
    SAR QSAR Environ Res; 2009 Jul; 20(5-6):551-66. PubMed ID: 19916114
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Combinatorial QSAR modeling of chemical toxicants tested against Tetrahymena pyriformis.
    Zhu H; Tropsha A; Fourches D; Varnek A; Papa E; Gramatica P; Oberg T; Dao P; Cherkasov A; Tetko IV
    J Chem Inf Model; 2008 Apr; 48(4):766-84. PubMed ID: 18311912
    [TBL] [Abstract][Full Text] [Related]  

  • 17. QSPR study on GC relative retention time of organic pesticides on different chromatographic columns.
    Hu R; Yin C; Wang Y; Lu C; Ge T
    J Sep Sci; 2008 Jul; 31(13):2434-43. PubMed ID: 18646271
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The usefulness of an artificial membrane accumulation index for estimation of the bioconcentration factor of organophosphorus pesticides.
    Fujikawa M; Nakao K; Shimizu R; Akamatsu M
    Chemosphere; 2009 Feb; 74(6):751-7. PubMed ID: 19084258
    [TBL] [Abstract][Full Text] [Related]  

  • 19. QSPR modeling of soil sorption coefficients (K(OC)) of pesticides using SPA-ANN and SPA-MLR.
    Goudarzi N; Goodarzi M; Araujo MC; Galvão RK
    J Agric Food Chem; 2009 Aug; 57(15):7153-8. PubMed ID: 19722589
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Minireview: does in-vitro testing of oximes help predict their in-vivo action after paraoxon exposure?
    Lorke DE; Petroianu GA
    J Appl Toxicol; 2009 Aug; 29(6):459-69. PubMed ID: 19603416
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.