These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

600 related articles for article (PubMed ID: 18038389)

  • 1. Osteoinductive biomaterials--properties and relevance in bone repair.
    Habibovic P; de Groot K
    J Tissue Eng Regen Med; 2007; 1(1):25-32. PubMed ID: 18038389
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative in vivo study of six hydroxyapatite-based bone graft substitutes.
    Habibovic P; Kruyt MC; Juhl MV; Clyens S; Martinetti R; Dolcini L; Theilgaard N; van Blitterswijk CA
    J Orthop Res; 2008 Oct; 26(10):1363-70. PubMed ID: 18404698
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biomaterials with Antibacterial and Osteoinductive Properties to Repair Infected Bone Defects.
    Lu H; Liu Y; Guo J; Wu H; Wang J; Wu G
    Int J Mol Sci; 2016 Mar; 17(3):334. PubMed ID: 26950123
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Osteoinduction of bone grafting materials for bone repair and regeneration.
    García-Gareta E; Coathup MJ; Blunn GW
    Bone; 2015 Dec; 81():112-121. PubMed ID: 26163110
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Current approaches to experimental bone grafting.
    Lane JM; Sandhu HS
    Orthop Clin North Am; 1987 Apr; 18(2):213-25. PubMed ID: 3550572
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel strategy for prefabrication of large and axially vascularized tissue engineered bone by using an arteriovenous loop.
    Ren LL; Ma DY; Feng X; Mao TQ; Liu YP; Ding Y
    Med Hypotheses; 2008 Nov; 71(5):737-40. PubMed ID: 18707815
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improved tissue-engineered bone regeneration by endothelial cell mediated vascularization.
    Yu H; VandeVord PJ; Mao L; Matthew HW; Wooley PH; Yang SY
    Biomaterials; 2009 Feb; 30(4):508-17. PubMed ID: 18973938
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Polymeric composites containing carbon nanotubes for bone tissue engineering.
    Sahithi K; Swetha M; Ramasamy K; Srinivasan N; Selvamurugan N
    Int J Biol Macromol; 2010 Apr; 46(3):281-3. PubMed ID: 20093139
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Effect of anti-inflammatory preparations on the osteoinductive activity of bone tissue].
    Sumarokov DD; Gutkin DV
    Farmakol Toksikol; 1988; 51(6):73-6. PubMed ID: 3069494
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biomaterial characteristics important to skeletal tissue engineering.
    Lim JY; Donahue HJ
    J Musculoskelet Neuronal Interact; 2004 Dec; 4(4):396-8. PubMed ID: 15758276
    [No Abstract]   [Full Text] [Related]  

  • 11. Current views on calcium phosphate osteogenicity and the translation into effective bone regeneration strategies.
    Chai YC; Carlier A; Bolander J; Roberts SJ; Geris L; Schrooten J; Van Oosterwyck H; Luyten FP
    Acta Biomater; 2012 Nov; 8(11):3876-87. PubMed ID: 22796326
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effects of recombinant human growth/differentiation factor-5 (rhGDF-5) on bone regeneration around titanium dental implants in barrier membrane-protected defects: a pilot study in the mandible of beagle dogs.
    Weng D; Poehling S; Pippig S; Bell M; Richter EJ; Zuhr O; Hürzeler MB
    Int J Oral Maxillofac Implants; 2009; 24(1):31-7. PubMed ID: 19344022
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [The osteoinductivity and the dose-effect relationship with implantation of reconstituted bone xenograft: experimental study].
    Zhao C; Hu Y; Lu R; Liu J; Jin G; Wang Y
    Zhonghua Wai Ke Za Zhi; 1998 Oct; 36(10):627-9, 121. PubMed ID: 11825483
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Advances in osteobiologic materials for bone substitutes.
    Hasan A; Byambaa B; Morshed M; Cheikh MI; Shakoor RA; Mustafy T; Marei HE
    J Tissue Eng Regen Med; 2018 Jun; 12(6):1448-1468. PubMed ID: 29701908
    [TBL] [Abstract][Full Text] [Related]  

  • 15. State of the art and future directions of scaffold-based bone engineering from a biomaterials perspective.
    Hutmacher DW; Schantz JT; Lam CX; Tan KC; Lim TC
    J Tissue Eng Regen Med; 2007; 1(4):245-60. PubMed ID: 18038415
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of different biomaterials on the expression pattern of the transcription factor Ets2 in bone-like constructs.
    Sutter W; Stein E; Koehn J; Schmidl C; Lezaic V; Ewers R; Turhani D
    J Craniomaxillofac Surg; 2009 Jul; 37(5):263-71. PubMed ID: 19318269
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Scaffolds for vascularized bone regeneration: advances and challenges.
    Boccaccini AR; Kneser U; Arkudas A
    Expert Rev Med Devices; 2012 Sep; 9(5):457-60. PubMed ID: 23116071
    [No Abstract]   [Full Text] [Related]  

  • 18. Natural coral exoskeleton as a bone graft substitute: a review.
    Demers C; Hamdy CR; Corsi K; Chellat F; Tabrizian M; Yahia L
    Biomed Mater Eng; 2002; 12(1):15-35. PubMed ID: 11847406
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chitosan film as rhBMP2 carrier: delivery properties for bone tissue application.
    Abarrategi A; Civantos A; Ramos V; Sanz Casado JV; López-Lacomba JL
    Biomacromolecules; 2008 Feb; 9(2):711-8. PubMed ID: 18163540
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sol-gel silica-based biomaterials and bone tissue regeneration.
    Arcos D; Vallet-Regí M
    Acta Biomater; 2010 Aug; 6(8):2874-88. PubMed ID: 20152946
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 30.