These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
236 related articles for article (PubMed ID: 18038914)
1. Mixed micellar nanoparticle of amphotericin B and poly styrene-block-poly ethylene oxide reduces nephrotoxicity but retains antifungal activity. Han K; Miah MA; Shanmugam S; Yong CS; Choi HG; Kim JA; Yoo BK Arch Pharm Res; 2007 Oct; 30(10):1344-9. PubMed ID: 18038914 [TBL] [Abstract][Full Text] [Related]
2. Oral administration of amphotericin B nanoparticles: antifungal activity, bioavailability and toxicity in rats. Radwan MA; AlQuadeib BT; Šiller L; Wright MC; Horrocks B Drug Deliv; 2017 Nov; 24(1):40-50. PubMed ID: 28155565 [TBL] [Abstract][Full Text] [Related]
3. In vitro dissociation of antifungal efficacy and toxicity for amphotericin B-loaded poly(ethylene oxide)-block-poly(beta benzyl L aspartate) micelles. Yu BG; Okano T; Kataoka K; Sardari S; Kwon GS J Control Release; 1998 Dec; 56(1-3):285-91. PubMed ID: 9801451 [TBL] [Abstract][Full Text] [Related]
4. Biodegradable functional polycarbonate micelles for controlled release of amphotericin B. Wang Y; Ke X; Voo ZX; Yap SSL; Yang C; Gao S; Liu S; Venkataraman S; Obuobi SAO; Khara JS; Yang YY; Ee PLR Acta Biomater; 2016 Dec; 46():211-220. PubMed ID: 27686042 [TBL] [Abstract][Full Text] [Related]
5. Amphotericin B encapsulated in micelles based on poly(ethylene oxide)-block-poly(L-amino acid) derivatives exerts reduced in vitro hemolysis but maintains potent in vivo antifungal activity. Adams ML; Andes DR; Kwon GS Biomacromolecules; 2003; 4(3):750-7. PubMed ID: 12741794 [TBL] [Abstract][Full Text] [Related]
6. Reformulation of Fungizone by PEG-DSPE Micelles: Deaggregation and Detoxification of Amphotericin B. Alvarez C; Shin DH; Kwon GS Pharm Res; 2016 Sep; 33(9):2098-106. PubMed ID: 27198671 [TBL] [Abstract][Full Text] [Related]
7. Amphotericin B loaded ethyl cellulose nanoparticles with magnified oral bioavailability for safe and effective treatment of fungal infection. Kaur K; Kumar P; Kush P Biomed Pharmacother; 2020 Aug; 128():110297. PubMed ID: 32480227 [TBL] [Abstract][Full Text] [Related]
8. Polymeric micelles for drug delivery: solubilization and haemolytic activity of amphotericin B. Yu BG; Okano T; Kataoka K; Kwon G J Control Release; 1998 Apr; 53(1-3):131-6. PubMed ID: 9741920 [TBL] [Abstract][Full Text] [Related]
9. Pharmacokinetics and Renal Toxicity of Monomeric Amphotericin B in Rats after a Multiple Dose Regimen. Kang JY; Gao J; Shin DH; Alvarez C; Zhong W; Kwon GS Pharm Nanotechnol; 2016; 4(1):16-23. PubMed ID: 27774409 [TBL] [Abstract][Full Text] [Related]
10. Assessment of in vitro antifungal efficacy and in vivo toxicity of Amphotericin B-loaded PLGA and PLGA-PEG blend nanoparticles. Moraes Moreira Carraro TC; Altmeyer C; Maissar Khalil N; Mara Mainardes R J Mycol Med; 2017 Dec; 27(4):519-529. PubMed ID: 28797532 [TBL] [Abstract][Full Text] [Related]
11. Nanoemulsion gel-based topical delivery of an antifungal drug: in vitro activity and in vivo evaluation. Hussain A; Samad A; Singh SK; Ahsan MN; Haque MW; Faruk A; Ahmed FJ Drug Deliv; 2016; 23(2):642-47. PubMed ID: 25013957 [TBL] [Abstract][Full Text] [Related]
12. Preparation, characterization, and evaluation of amphotericin B-loaded MPEG-PCL-g-PEI micelles for local treatment of oral Zhou L; Zhang P; Chen Z; Cai S; Jing T; Fan H; Mo F; Zhang J; Lin R Int J Nanomedicine; 2017; 12():4269-4283. PubMed ID: 28652732 [TBL] [Abstract][Full Text] [Related]
13. Enhanced antifungal effects of amphotericin B-TPGS-b-(PCL-ran-PGA) nanoparticles in vitro and in vivo. Tang X; Zhu H; Sun L; Hou W; Cai S; Zhang R; Liu F Int J Nanomedicine; 2014; 9():5403-13. PubMed ID: 25473279 [TBL] [Abstract][Full Text] [Related]
15. Linolenic acid-modified methoxy poly (ethylene glycol)-oligochitosan conjugate micelles for encapsulation of amphotericin B. Song Z; Wen Y; Deng P; Teng F; Zhou F; Xu H; Feng S; Zhu L; Feng R Carbohydr Polym; 2019 Feb; 205():571-580. PubMed ID: 30446143 [TBL] [Abstract][Full Text] [Related]
16. Lipoamino acid-based micelles as promising delivery vehicles for monomeric amphotericin B. Serafim C; Ferreira I; Rijo P; Pinheiro L; Faustino C; Calado A; Garcia-Rio L Int J Pharm; 2016 Jan; 497(1-2):23-35. PubMed ID: 26617315 [TBL] [Abstract][Full Text] [Related]
17. Encapsulation of amphotericin B in poly(ethylene glycol)-block-poly(epsilon-caprolactone-co-trimethylenecarbonate) polymeric micelles. Vandermeulen G; Rouxhet L; Arien A; Brewster ME; Préat V Int J Pharm; 2006 Feb; 309(1-2):234-40. PubMed ID: 16406402 [TBL] [Abstract][Full Text] [Related]
18. Combination antifungal therapy involving amphotericin B, rapamycin and 5-fluorocytosine using PEG-phospholipid micelles. Vakil R; Knilans K; Andes D; Kwon GS Pharm Res; 2008 Sep; 25(9):2056-64. PubMed ID: 18415047 [TBL] [Abstract][Full Text] [Related]
19. A novel performing PEG-cholane nanoformulation for Amphotericin B delivery. Luengo-Alonso C; Torrado JJ; Ballesteros MP; Malfanti A; Bersani S; Salmaso S; Caliceti P Int J Pharm; 2015 Nov; 495(1):41-51. PubMed ID: 26319629 [TBL] [Abstract][Full Text] [Related]
20. The effect of fatty acid substitution on the in vitro release of amphotericin B from micelles composed of poly(ethylene oxide)-block-poly(N-hexyl stearate-L-aspartamide). Lavasanifar A; Samuel J; Kwon GS J Control Release; 2002 Feb; 79(1-3):165-72. PubMed ID: 11853928 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]