These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
174 related articles for article (PubMed ID: 18039461)
1. Energy transfer processes in Gloeobacter violaceus PCC 7421 that possesses phycobilisomes with a unique morphology. Yokono M; Akimoto S; Koyama K; Tsuchiya T; Mimuro M Biochim Biophys Acta; 2008 Jan; 1777(1):55-65. PubMed ID: 18039461 [TBL] [Abstract][Full Text] [Related]
2. A proteomic approach to the analysis of the components of the phycobilisomes from two cyanobacteria with complementary chromatic adaptation: Fremyella diplosiphon UTEX B590 and Tolypothrix PCC 7601. Pérez-Gómez B; Mendoza-Hernández G; Cabellos-Avelar T; Leyva-Castillo LE; Gutiérrez-Cirlos EB; Gómez-Lojero C Photosynth Res; 2012 Oct; 114(1):43-58. PubMed ID: 22965313 [TBL] [Abstract][Full Text] [Related]
3. New linker proteins in phycobilisomes isolated from the cyanobacterium Gloeobacter violaceus PCC 7421. Koyama K; Tsuchiya T; Akimoto S; Yokono M; Miyashita H; Mimuro M FEBS Lett; 2006 Jun; 580(14):3457-61. PubMed ID: 16714023 [TBL] [Abstract][Full Text] [Related]
4. Effects of chromatic illumination on cyanobacterial phycobilisomes. Evidence for the specific induction of a second pair of phycocyanin subunits in Pseudanabaena 7409 grown in red light. Bryant DA; Cohen-Bazire G Eur J Biochem; 1981 Oct; 119(2):415-24. PubMed ID: 6796413 [TBL] [Abstract][Full Text] [Related]
5. Time-resolved fluorescence study of excitation energy transfer in the cyanobacterium Anabaena PCC 7120. Akhtar P; Biswas A; Petrova N; Zakar T; van Stokkum IHM; Lambrev PH Photosynth Res; 2020 May; 144(2):247-259. PubMed ID: 32076913 [TBL] [Abstract][Full Text] [Related]
6. Fluorescence induction in the phycobilisome-containing cyanobacterium Synechococcus sp PCC 7942: analysis of the slow fluorescence transient. Stamatakis K; Tsimilli-Michael M; Papageorgiou GC Biochim Biophys Acta; 2007 Jun; 1767(6):766-72. PubMed ID: 17448439 [TBL] [Abstract][Full Text] [Related]
7. The phycocyanin-associated rod linker proteins of the phycobilisome of Gloeobacter violaceus PCC 7421 contain unusually located rod-capping domains. Gutiérrez-Cirlos EB; Pérez-Gómez B; Krogmann DW; Gómez-Lojero C Biochim Biophys Acta; 2006 Feb; 1757(2):130-4. PubMed ID: 16617515 [TBL] [Abstract][Full Text] [Related]
8. Sorbitol regulates energy transfer from allophycocyanin to the terminal emitter within phycobilisomes in Synechocystis sp. Liu X; Zhao J; Wu Q Biotechnol Lett; 2007 Feb; 29(2):253-9. PubMed ID: 17091373 [TBL] [Abstract][Full Text] [Related]
9. The Role of Selected Wavelengths of Light in the Activity of Photosystem II in Kula-Maximenko M; Zieliński KJ; Ślesak I Int J Mol Sci; 2021 Apr; 22(8):. PubMed ID: 33924720 [No Abstract] [Full Text] [Related]
10. Characterization of green mutants in Fremyella diplosiphon provides insight into the impact of phycoerythrin deficiency and linker function on complementary chromatic adaptation. Whitaker MJ; Pattanaik B; Montgomery BL Biochem Biophys Res Commun; 2011 Jan; 404(1):52-6. PubMed ID: 21094137 [TBL] [Abstract][Full Text] [Related]
11. ApcD is necessary for efficient energy transfer from phycobilisomes to photosystem I and helps to prevent photoinhibition in the cyanobacterium Synechococcus sp. PCC 7002. Dong C; Tang A; Zhao J; Mullineaux CW; Shen G; Bryant DA Biochim Biophys Acta; 2009 Sep; 1787(9):1122-8. PubMed ID: 19397890 [TBL] [Abstract][Full Text] [Related]
12. Structural studies show energy transfer within stabilized phycobilisomes independent of the mode of rod-core assembly. David L; Prado M; Arteni AA; Elmlund DA; Blankenship RE; Adir N Biochim Biophys Acta; 2014 Mar; 1837(3):385-95. PubMed ID: 24407142 [TBL] [Abstract][Full Text] [Related]
13. Light adaptation of the unicellular red alga, Cyanidioschyzon merolae, probed by time-resolved fluorescence spectroscopy. Ueno Y; Aikawa S; Kondo A; Akimoto S Photosynth Res; 2015 Aug; 125(1-2):211-8. PubMed ID: 25577254 [TBL] [Abstract][Full Text] [Related]
14. Mutagenic analysis of the bundle-shaped phycobilisome from Gloeobacter violaceus. Wang H; Zheng Z; Zheng L; Zhang Z; Dong C; Zhao J Photosynth Res; 2023 Nov; 158(2):81-90. PubMed ID: 36847892 [TBL] [Abstract][Full Text] [Related]
15. Excitation energy transfer from phycobiliprotein to chlorophyll d in intact cells of Acaryochloris marina studied by time- and wavelength-resolved fluorescence spectroscopy. Petrásek Z; Schmitt FJ; Theiss C; Huyer J; Chen M; Larkum A; Eichler HJ; Kemnitz K; Eckert HJ Photochem Photobiol Sci; 2005 Dec; 4(12):1016-22. PubMed ID: 16307116 [TBL] [Abstract][Full Text] [Related]
16. Direct single-molecule measurements of phycocyanobilin photophysics in monomeric C-phycocyanin. Squires AH; Moerner WE Proc Natl Acad Sci U S A; 2017 Sep; 114(37):9779-9784. PubMed ID: 28847963 [TBL] [Abstract][Full Text] [Related]
17. Molecular characterization of phycobilisome regulatory mutants of Fremyella diplosiphon. Bruns BU; Briggs WR; Grossman AR J Bacteriol; 1989 Feb; 171(2):901-8. PubMed ID: 2464582 [TBL] [Abstract][Full Text] [Related]
18. Spectroscopic investigation on the energy transfer process in photosynthetic apparatus of cyanobacteria. Li Y; Wang B; Ai XC; Zhang XK; Zhao JQ; Jiang LJ Spectrochim Acta A Mol Biomol Spectrosc; 2004 Jun; 60(7):1543-7. PubMed ID: 15147696 [TBL] [Abstract][Full Text] [Related]
19. Variations in photosystem I properties in the primordial cyanobacterium Gloeobacter violaceus PCC 7421. Mimuro M; Yokono M; Akimoto S Photochem Photobiol; 2010; 86(1):62-9. PubMed ID: 19769578 [TBL] [Abstract][Full Text] [Related]
20. Long-term light adaptation of light-harvesting and energy-transfer processes in the glaucophyte Cyanophora paradoxa under different light conditions. Ueno Y; Akimoto S Photosynth Res; 2024 Mar; 159(2-3):165-175. PubMed ID: 37233900 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]