BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

274 related articles for article (PubMed ID: 18039709)

  • 1. Transcription of Satellite III non-coding RNAs is a general stress response in human cells.
    Valgardsdottir R; Chiodi I; Giordano M; Rossi A; Bazzini S; Ghigna C; Riva S; Biamonti G
    Nucleic Acids Res; 2008 Feb; 36(2):423-34. PubMed ID: 18039709
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural and functional characterization of noncoding repetitive RNAs transcribed in stressed human cells.
    Valgardsdottir R; Chiodi I; Giordano M; Cobianchi F; Riva S; Biamonti G
    Mol Biol Cell; 2005 Jun; 16(6):2597-604. PubMed ID: 15788562
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Heat Shock Affects Mitotic Segregation of Human Chromosomes Bound to Stress-Induced Satellite III RNAs.
    Giordano M; Infantino L; Biggiogera M; Montecucco A; Biamonti G
    Int J Mol Sci; 2020 Apr; 21(8):. PubMed ID: 32316575
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Satellite III non-coding RNAs show distinct and stress-specific patterns of induction.
    Sengupta S; Parihar R; Ganesh S
    Biochem Biophys Res Commun; 2009 Apr; 382(1):102-7. PubMed ID: 19258006
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chromosome Y pericentric heterochromatin is a primary target of HSF1 in male cells.
    Penin J; Dufour S; Faure V; Fritah S; Seigneurin-Berny D; Col E; Verdel A; Vourc'h C
    Chromosoma; 2021 Mar; 130(1):53-60. PubMed ID: 33547955
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Human satellite III long noncoding RNA imparts survival benefits to cancer cells.
    Chatterjee M; Sengupta S
    Cell Biol Int; 2022 Apr; 46(4):611-627. PubMed ID: 35005799
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Heat shock factor 1 binds to and transcribes satellite II and III sequences at several pericentromeric regions in heat-shocked cells.
    Eymery A; Souchier C; Vourc'h C; Jolly C
    Exp Cell Res; 2010 Jul; 316(11):1845-55. PubMed ID: 20152833
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Human satellite-III non-coding RNAs modulate heat-shock-induced transcriptional repression.
    Goenka A; Sengupta S; Pandey R; Parihar R; Mohanta GC; Mukerji M; Ganesh S
    J Cell Sci; 2016 Oct; 129(19):3541-3552. PubMed ID: 27528402
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A key role for stress-induced satellite III transcripts in the relocalization of splicing factors into nuclear stress granules.
    Metz A; Soret J; Vourc'h C; Tazi J; Jolly C
    J Cell Sci; 2004 Sep; 117(Pt 19):4551-8. PubMed ID: 15331664
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stress-induced transcription of satellite III repeats.
    Jolly C; Metz A; Govin J; Vigneron M; Turner BM; Khochbin S; Vourc'h C
    J Cell Biol; 2004 Jan; 164(1):25-33. PubMed ID: 14699086
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nuclear stress bodies: Interaction of its components in oncogenic regulation.
    Chatterjee M; Dass J FP; Sengupta S
    J Cell Biochem; 2019 Sep; 120(9):14700-14710. PubMed ID: 31090102
    [TBL] [Abstract][Full Text] [Related]  

  • 12. RNA recognition motif 2 directs the recruitment of SF2/ASF to nuclear stress bodies.
    Chiodi I; Corioni M; Giordano M; Valgardsdottir R; Ghigna C; Cobianchi F; Xu RM; Riva S; Biamonti G
    Nucleic Acids Res; 2004; 32(14):4127-36. PubMed ID: 15302913
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cancer-linked satellite 2 DNA hypomethylation does not regulate Sat2 non-coding RNA expression and is initiated by heat shock pathway activation.
    Tilman G; Arnoult N; Lenglez S; Van Beneden A; Loriot A; De Smet C; Decottignies A
    Epigenetics; 2012 Aug; 7(8):903-13. PubMed ID: 22722874
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Human sat III and Drosophila hsr omega transcripts: a common paradigm for regulation of nuclear RNA processing in stressed cells.
    Jolly C; Lakhotia SC
    Nucleic Acids Res; 2006; 34(19):5508-14. PubMed ID: 17020918
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The bromodomain protein BRD4 regulates splicing during heat shock.
    Hussong M; Kaehler C; Kerick M; Grimm C; Franz A; Timmermann B; Welzel F; Isensee J; Hucho T; Krobitsch S; Schweiger MR
    Nucleic Acids Res; 2017 Jan; 45(1):382-394. PubMed ID: 27536004
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Heat shock factor 1 represses transcription of the IL-1beta gene through physical interaction with the nuclear factor of interleukin 6.
    Xie Y; Chen C; Stevenson MA; Auron PE; Calderwood SK
    J Biol Chem; 2002 Apr; 277(14):11802-10. PubMed ID: 11801594
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The heat-shock transcription factor HSF1 is rapidly activated by either hyper- or hypo-osmotic stress in mammalian cells.
    Caruccio L; Bae S; Liu AY; Chen KY
    Biochem J; 1997 Oct; 327 ( Pt 2)(Pt 2):341-7. PubMed ID: 9359399
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Satellite RNAs: emerging players in subnuclear architecture and gene regulation.
    Ninomiya K; Yamazaki T; Hirose T
    EMBO J; 2023 Sep; 42(18):e114331. PubMed ID: 37526230
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rapid activation of the heat shock transcription factor, HSF1, by hypo-osmotic stress in mammalian cells.
    Huang LE; Caruccio L; Liu AY; Chen KY
    Biochem J; 1995 Apr; 307 ( Pt 2)(Pt 2):347-52. PubMed ID: 7733868
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transcriptional activation of a constitutive heterochromatic domain of the human genome in response to heat shock.
    Rizzi N; Denegri M; Chiodi I; Corioni M; Valgardsdottir R; Cobianchi F; Riva S; Biamonti G
    Mol Biol Cell; 2004 Feb; 15(2):543-51. PubMed ID: 14617804
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.