These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
495 related articles for article (PubMed ID: 18039940)
1. Extracellular vesicles produced by Cryptococcus neoformans contain protein components associated with virulence. Rodrigues ML; Nakayasu ES; Oliveira DL; Nimrichter L; Nosanchuk JD; Almeida IC; Casadevall A Eukaryot Cell; 2008 Jan; 7(1):58-67. PubMed ID: 18039940 [TBL] [Abstract][Full Text] [Related]
2. Sec6-dependent sorting of fungal extracellular exosomes and laccase of Cryptococcus neoformans. Panepinto J; Komperda K; Frases S; Park YD; Djordjevic JT; Casadevall A; Williamson PR Mol Microbiol; 2009 Mar; 71(5):1165-76. PubMed ID: 19210702 [TBL] [Abstract][Full Text] [Related]
3. Interaction of Cryptococcus neoformans extracellular vesicles with the cell wall. Wolf JM; Espadas-Moreno J; Luque-Garcia JL; Casadevall A Eukaryot Cell; 2014 Dec; 13(12):1484-93. PubMed ID: 24906412 [TBL] [Abstract][Full Text] [Related]
4. Role of the ESCRT Pathway in Laccase Trafficking and Virulence of Cryptococcus neoformans. Park YD; Chen SH; Camacho E; Casadevall A; Williamson PR Infect Immun; 2020 Jun; 88(7):. PubMed ID: 32284371 [TBL] [Abstract][Full Text] [Related]
5. Vesicular polysaccharide export in Cryptococcus neoformans is a eukaryotic solution to the problem of fungal trans-cell wall transport. Rodrigues ML; Nimrichter L; Oliveira DL; Frases S; Miranda K; Zaragoza O; Alvarez M; Nakouzi A; Feldmesser M; Casadevall A Eukaryot Cell; 2007 Jan; 6(1):48-59. PubMed ID: 17114598 [TBL] [Abstract][Full Text] [Related]
6. A Novel Protocol for the Isolation of Fungal Extracellular Vesicles Reveals the Participation of a Putative Scramblase in Polysaccharide Export and Capsule Construction in Reis FCG; Borges BS; Jozefowicz LJ; Sena BAG; Garcia AWA; Medeiros LC; Martins ST; Honorato L; Schrank A; Vainstein MH; Kmetzsch L; Nimrichter L; Alves LR; Staats CC; Rodrigues ML mSphere; 2019 Mar; 4(2):. PubMed ID: 30894430 [TBL] [Abstract][Full Text] [Related]
7. Contribution of Laccase Expression to Immune Response against Cryptococcus gattii Infection. Hansakon A; Ngamskulrungroj P; Angkasekwinai P Infect Immun; 2020 Feb; 88(3):. PubMed ID: 31871099 [TBL] [Abstract][Full Text] [Related]
9. Role for Golgi reassembly and stacking protein (GRASP) in polysaccharide secretion and fungal virulence. Kmetzsch L; Joffe LS; Staats CC; de Oliveira DL; Fonseca FL; Cordero RJ; Casadevall A; Nimrichter L; Schrank A; Vainstein MH; Rodrigues ML Mol Microbiol; 2011 Jul; 81(1):206-18. PubMed ID: 21542865 [TBL] [Abstract][Full Text] [Related]
10. A novel specificity protein 1 (SP1)-like gene regulating protein kinase C-1 (Pkc1)-dependent cell wall integrity and virulence factors in Cryptococcus neoformans. Adler A; Park YD; Larsen P; Nagarajan V; Wollenberg K; Qiu J; Myers TG; Williamson PR J Biol Chem; 2011 Jun; 286(23):20977-90. PubMed ID: 21487010 [TBL] [Abstract][Full Text] [Related]
11. A potential of propolis on major virulence factors of Cryptococcus neoformans. Thammasit P; Iadnut A; Mamoon K; Khacha-Ananda S; Chupradit K; Tayapiwatana C; Kasinrerk W; Tragoolpua Y; Tragoolpua K Microb Pathog; 2018 Oct; 123():296-303. PubMed ID: 30041002 [TBL] [Abstract][Full Text] [Related]
12. Cryptococcus gattii urease as a virulence factor and the relevance of enzymatic activity in cryptococcosis pathogenesis. Feder V; Kmetzsch L; Staats CC; Vidal-Figueiredo N; Ligabue-Braun R; Carlini CR; Vainstein MH FEBS J; 2015 Apr; 282(8):1406-18. PubMed ID: 25675897 [TBL] [Abstract][Full Text] [Related]
13. Cryptococcus neoformans cryoultramicrotomy and vesicle fractionation reveals an intimate association between membrane lipids and glucuronoxylomannan. Oliveira DL; Nimrichter L; Miranda K; Frases S; Faull KF; Casadevall A; Rodrigues ML Fungal Genet Biol; 2009 Dec; 46(12):956-63. PubMed ID: 19747978 [TBL] [Abstract][Full Text] [Related]
14. Cell wall targeting of laccase of Cryptococcus neoformans during infection of mice. Waterman SR; Hacham M; Panepinto J; Hu G; Shin S; Williamson PR Infect Immun; 2007 Feb; 75(2):714-22. PubMed ID: 17101662 [TBL] [Abstract][Full Text] [Related]
15. Laccase and melanin in the pathogenesis of Cryptococcus neoformans. Williamson PR Front Biosci; 1997 Nov; 2():e99-107. PubMed ID: 9342305 [TBL] [Abstract][Full Text] [Related]
16. Measuring Urease and Phospholipase Secretion in Cryptococcus neoformans. Hoffman HJ; McClelland EE Methods Mol Biol; 2024; 2775():269-275. PubMed ID: 38758324 [TBL] [Abstract][Full Text] [Related]
17. Colombo AC; Rella A; Normile T; Joffe LS; Tavares PM; de S Araújo GR; Frases S; Orner EP; Farnoud AM; Fries BC; Sheridan B; Nimrichter L; Rodrigues ML; Del Poeta M mBio; 2019 Apr; 10(2):. PubMed ID: 30940711 [No Abstract] [Full Text] [Related]
19. Regulated Release of Cryptococcal Polysaccharide Drives Virulence and Suppresses Immune Cell Infiltration into the Central Nervous System. Denham ST; Verma S; Reynolds RC; Worne CL; Daugherty JM; Lane TE; Brown JCS Infect Immun; 2018 Mar; 86(3):. PubMed ID: 29203547 [No Abstract] [Full Text] [Related]
20. Induction of signal transduction pathways related to the pathogenicity of Cryptococcus neoformans in the host environment. Matsumoto Y; Azami S; Shiga H; Nagamachi T; Moriyama H; Yamashita Y; Yoshikawa A; Sugita T Drug Discov Ther; 2019; 13(4):177-182. PubMed ID: 31534068 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]