BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 18040256)

  • 1. Sensitivity and specificity of the optos optomap for detecting peripheral retinal lesions.
    Mackenzie PJ; Russell M; Ma PE; Isbister CM; Maberley DA
    Retina; 2007 Oct; 27(8):1119-24. PubMed ID: 18040256
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Use of Optomap for retinal screening within an eye casualty setting.
    Khandhadia S; Madhusudhana KC; Kostakou A; Forrester JV; Newsom RS
    Br J Ophthalmol; 2009 Jan; 93(1):52-5. PubMed ID: 18971233
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Screening for retinal detachment using wide-field retinal imaging].
    Bonnay G; Nguyen F; Meunier I; Ducasse A; Hamel C; Arndt C
    J Fr Ophtalmol; 2011 Sep; 34(7):482-5. PubMed ID: 21621874
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optomap ultrawide field imaging for detecting peripheral retinal lesions in 1725 high myopic eyes before implantable collamer lens surgery.
    Yang D; Li M; Wei R; Xu Y; Shang J; Zhou X
    Clin Exp Ophthalmol; 2020 Sep; 48(7):895-902. PubMed ID: 32510801
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultrawide-angle retinal imaging and retinal detachment.
    Anderson L; Friberg TR; Singh J
    Semin Ophthalmol; 2007; 22(1):43-7. PubMed ID: 17366119
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of two ultra-widefield imaging for detecting peripheral retinal breaks requiring treatment.
    Kumar J; Kohli P; Babu N; Krishnakumar K; Arthur D; Ramasamy K
    Graefes Arch Clin Exp Ophthalmol; 2021 Jun; 259(6):1427-1434. PubMed ID: 32970213
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inter-observer agreement and sensitivity of Optomap images for screening peripheral retinal lesions in patients undergoing refractive surgery.
    Venkatesh R; Cherry JP; Reddy NG; Anilkumar A; Sridharan A; Sangai S; Shetty R; Yadav NK; Jayadev C
    Indian J Ophthalmol; 2020 Dec; 68(12):2930-2934. PubMed ID: 33229672
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Diagnostic methods in retinal detachment].
    Huttmann G
    Oftalmologia; 1994; 38(1):4-16. PubMed ID: 8155619
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Diagnostic effectiveness of noncontact slitlamp examination in the identification of retinal tears.
    Natkunarajah M; Goldsmith C; Goble R
    Eye (Lond); 2003 Jul; 17(5):607-9. PubMed ID: 12855967
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Use of the Optomap with lid retraction and its sensitivity and specificity.
    Cheng SC; Yap MK; Goldschmidt E; Swann PG; Ng LH; Lam CS
    Clin Exp Optom; 2008 Jul; 91(4):373-8. PubMed ID: 18601667
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Non-mydriatic panoramic fundus imaging using a non-contact scanning laser-based system.
    Friberg TR; Pandya A; Eller AW
    Ophthalmic Surg Lasers Imaging; 2003; 34(6):488-97. PubMed ID: 14620758
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fellow eye findings of highly myopic subjects operated for retinal detachment associated with a macular hole.
    Ripandelli G; Coppé AM; Parisi V; Stirpe M
    Ophthalmology; 2008 Sep; 115(9):1489-93. PubMed ID: 18439680
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultra-wide-field fluorescein angiography of the ocular fundus.
    Manivannan A; Plskova J; Farrow A; Mckay S; Sharp PF; Forrester JV
    Am J Ophthalmol; 2005 Sep; 140(3):525-7. PubMed ID: 16139004
    [TBL] [Abstract][Full Text] [Related]  

  • 14. EVALUATING ULTRA-WIDEFIELD IMAGING UTILITY IN THE DETECTION OF TREATMENT-REQUIRING PERIPHERAL RETINAL TEARS AND HOLES.
    Khan M; Kovacs K; Guan I; Goldblatt N; Foulsham W; Wu A; Papakostas T; Gupta M; D'Amico DJ; Kiss S; Orlin A
    Retina; 2024 Jan; 44(1):71-77. PubMed ID: 37651732
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Non-mydriatic imaging of a giant retinal tear with the Optos Optomap Panoramic 200MA.
    Meyer CH; Saxena S
    Clin Exp Ophthalmol; 2010 May; 38(4):427. PubMed ID: 20642589
    [No Abstract]   [Full Text] [Related]  

  • 16. Imaging vitreomacular interface abnormalities in the coronal plane by simultaneous combined scanning laser and optical coherence tomography.
    Tammewar AM; Bartsch DU; Kozak I; Rosen R; Falkenstein IA; Garcia P; Freeman WR
    Br J Ophthalmol; 2009 Mar; 93(3):366-72. PubMed ID: 19019945
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spectral-domain optical coherence tomography with multiple B-scan averaging for enhanced imaging of retinal diseases.
    Sakamoto A; Hangai M; Yoshimura N
    Ophthalmology; 2008 Jun; 115(6):1071-1078.e7. PubMed ID: 18061270
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparing glaucomatous optic neuropathy in primary open angle and primary angle closure glaucoma eyes by scanning laser polarimetry-variable corneal compensation.
    Chen HY; Huang ML; Tsai YY; Hung PT; Lin EJ
    J Glaucoma; 2008 Mar; 17(2):105-10. PubMed ID: 18344755
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Physical examination and magnetic resonance imaging in the diagnosis of superior labrum anterior-posterior lesions of the shoulder: a sensitivity analysis.
    Pandya NK; Colton A; Webner D; Sennett B; Huffman GR
    Arthroscopy; 2008 Mar; 24(3):311-7. PubMed ID: 18308183
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The inter-observer reproducibility of Shafer's sign.
    Qureshi F; Goble R
    Eye (Lond); 2009 Mar; 23(3):661-2. PubMed ID: 18309329
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.