BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 18040873)

  • 1. Near-infrared spectroscopy to monitor peripheral blood flow perfusion.
    Harel F; Denault A; Ngo Q; Dupuis J; Khairy P
    J Clin Monit Comput; 2008 Feb; 22(1):37-43. PubMed ID: 18040873
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Arterial flow measurements during reactive hyperemia using NIRS.
    Harel F; Olamaei N; Ngo Q; Dupuis J; Khairy P
    Physiol Meas; 2008 Sep; 29(9):1033-40. PubMed ID: 18698112
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Radionuclide plethysmography for noninvasive evaluation of peripheral arterial blood flow.
    Harel F; Dupuis J; Benelfassi A; Ruel N; Grégoire J
    Am J Physiol Heart Circ Physiol; 2005 Jul; 289(1):H258-62. PubMed ID: 15734880
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mobile detection system to evaluate reactive hyperemia using radionuclide plethysmography.
    Harel F; Ngo Q; Finnerty V; Hernandez E; Khairy P; Dupuis J
    Physiol Meas; 2007 Aug; 28(8):953-62. PubMed ID: 17664685
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Near-infrared spectroscopy provides an index of blood flow and vasoconstriction in calf skeletal muscle during lower body negative pressure.
    Hachiya T; Blaber AP; Saito M
    Acta Physiol (Oxf); 2008 Jun; 193(2):117-27. PubMed ID: 18162057
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Near-infrared spectroscopy of the thenar eminence to estimate forearm blood flow.
    Woinarski NC; Suzuki S; Lipcsey M; Lumsden N; Chin-Dusting J; Schneider AG; Bailey M; Bellomo R
    Crit Care Resusc; 2013 Dec; 15(4):323-6. PubMed ID: 24289515
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Noninvasive measurement of forearm blood flow and oxygen consumption by near-infrared spectroscopy.
    De Blasi RA; Ferrari M; Natali A; Conti G; Mega A; Gasparetto A
    J Appl Physiol (1985); 1994 Mar; 76(3):1388-93. PubMed ID: 8005887
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Validation of frontal near-infrared spectroscopy as noninvasive bedside monitoring for regional cerebral blood flow in brain-injured patients.
    Taussky P; O'Neal B; Daugherty WP; Luke S; Thorpe D; Pooley RA; Evans C; Hanel RA; Freeman WD
    Neurosurg Focus; 2012 Feb; 32(2):E2. PubMed ID: 22296679
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization and reproducibility of forearm arterial flow during reactive hyperemia.
    Olamaei N; Dupuis J; Ngo Q; Finnerty V; Vo Thang TT; Authier S; Khairy P; Harel F
    Physiol Meas; 2010 Jun; 31(6):763-73. PubMed ID: 20410556
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The relation of near-infrared spectroscopy with changes in peripheral circulation in critically ill patients.
    Lima A; van Bommel J; Sikorska K; van Genderen M; Klijn E; Lesaffre E; Ince C; Bakker J
    Crit Care Med; 2011 Jul; 39(7):1649-54. PubMed ID: 21685739
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Performance of near-infrared spectroscopy in measuring local O(2) consumption and blood flow in skeletal muscle.
    Van Beekvelt MC; Colier WN; Wevers RA; Van Engelen BG
    J Appl Physiol (1985); 2001 Feb; 90(2):511-9. PubMed ID: 11160049
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Measurement of venous oxyhaemoglobin saturation in the adult human forearm by near infrared spectroscopy with venous occlusion.
    Yoxall CW; Weindling AM
    Med Biol Eng Comput; 1997 Jul; 35(4):331-6. PubMed ID: 9327608
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Continuous monitoring of kidney transplant perfusion with near-infrared spectroscopy.
    Malakasioti G; Marks SD; Watson T; Williams F; Taylor-Allkins M; Mamode N; Morgan J; Hayes WN
    Nephrol Dial Transplant; 2018 Oct; 33(10):1863-1869. PubMed ID: 29757424
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Measurement of hemoglobin flow and blood flow by near-infrared spectroscopy.
    Edwards AD; Richardson C; van der Zee P; Elwell C; Wyatt JS; Cope M; Delpy DT; Reynolds EO
    J Appl Physiol (1985); 1993 Oct; 75(4):1884-9. PubMed ID: 8282646
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The impact of venous occlusion per se on forearm muscle blood flow: implications for the near-infrared spectroscopy venous occlusion technique.
    Cross TJ; Sabapathy S
    Clin Physiol Funct Imaging; 2017 May; 37(3):293-298. PubMed ID: 26427913
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reproducibility of blood flow and post-occlusive reactive hyperaemia as measured by venous occlusion plethysmography.
    Thijssen DH; Bleeker MW; Smits P; Hopman MT
    Clin Sci (Lond); 2005 Feb; 108(2):151-7. PubMed ID: 15494042
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessing skeletal muscle variations in microvascular pressure and unstressed blood volume at the bedside.
    De Blasi RA; Arcioni R
    Microcirculation; 2014 Oct; 21(7):606-14. PubMed ID: 24702908
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sensitivity correction for the influence of the fat layer on muscle oxygenation and estimation of fat thickness by time-resolved spectroscopy.
    Ohmae E; Nishio S; Oda M; Suzuki H; Suzuki T; Ohashi K; Koga S; Yamashita Y; Watanabe H
    J Biomed Opt; 2014 Jun; 19(6):067005. PubMed ID: 24911021
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reflectance Photoplethysmography as Noninvasive Monitoring of Tissue Blood Perfusion.
    Abay TY; Kyriacou PA
    IEEE Trans Biomed Eng; 2015 Sep; 62(9):2187-95. PubMed ID: 25838515
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Calf and forearm blood flow in hypercholesterolemic patients.
    Cortella A; Zambon S; Sartore G; Piarulli F; Calabrò A; Manzato E; Crepaldi G
    Angiology; 2000 Apr; 51(4):309-18. PubMed ID: 10779001
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.