These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 18040968)

  • 1. Contributions to elevated metabolism during recovery: dissecting the excess postexercise oxygen consumption (EPOC) in the desert iguana (Dipsosaurus dorsalis).
    Hancock TV; Gleeson TT
    Physiol Biochem Zool; 2008; 81(1):1-13. PubMed ID: 18040968
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intermittent locomotor activity that increases endurance also increases metabolic costs in the desert Iguana (Dipsosaurus dorsalis).
    Hancock TV; Gleeson TT
    Physiol Biochem Zool; 2005; 78(2):163-72. PubMed ID: 15778936
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of activity duration on recovery and metabolic costs in the desert iguana (Dipsosaurus dorsalis).
    Hancock TV; Adolph SC; Gleeson TT
    Comp Biochem Physiol A Mol Integr Physiol; 2001 Aug; 130(1):67-79. PubMed ID: 11672684
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The influence of corticosterone and glucagon on metabolic recovery from exhaustive exercise in the desert iguana Dipsosaurus dorsalis.
    Scholnick DA; Weinstein RB; Gleeson TT
    Gen Comp Endocrinol; 1997 May; 106(2):147-54. PubMed ID: 9169110
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metabolic support of moderate activity differs from patterns seen after extreme behavior in the desert iguana Dipsosaurus dorsalis.
    Donovan ER; Gleeson TT
    Physiol Biochem Zool; 2006; 79(2):370-88. PubMed ID: 16555196
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Activity before exercise influences recovery metabolism in the lizard Dipsosaurus dorsalis.
    Scholnick DA; Gleeson TT
    J Exp Biol; 2000 Jun; 203(Pt 12):1809-15. PubMed ID: 10821738
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of exercise intensity and duration on the excess post-exercise oxygen consumption.
    LaForgia J; Withers RT; Gore CJ
    J Sports Sci; 2006 Dec; 24(12):1247-64. PubMed ID: 17101527
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Roles of lactate and catecholamines in the energetics of brief locomotion in an ectothermic vertebrate.
    Nedrow JM; Scholnick DA; Gleeson TT
    J Comp Physiol B; 2001 Apr; 171(3):237-45. PubMed ID: 11352107
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Relationships between V̇O2 and blood lactate responses after all-out running exercise.
    de Aguiar RA; Cruz RS; Turnes T; Pereira KL; Caputo F
    Appl Physiol Nutr Metab; 2015 Mar; 40(3):263-8. PubMed ID: 25693899
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Direct and indirect calorimetry of lactate oxidation: implications for whole-body energy expenditure.
    Scott CB; Kemp RB
    J Sports Sci; 2005 Jan; 23(1):15-9. PubMed ID: 15841591
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rapid metabolic recovery following vigorous exercise in burrow-dwelling larval sea lampreys (Petromyzon marinus).
    Wilkie MP; Bradshaw PG; Joanis V; Claude JF; Swindell SL
    Physiol Biochem Zool; 2001; 74(2):261-72. PubMed ID: 11247745
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Scaling the duration of activity relative to body mass results in similar locomotor performance and metabolic costs in lizards.
    Donovan ER; Gleeson TT
    J Exp Biol; 2008 Oct; 211(Pt 20):3258-65. PubMed ID: 18840659
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prediction method for the volume of the excess post-exercise oxygen consumption (EPOC) following supramaximal exercise.
    Stefanova D
    Acta Physiol Pharmacol Bulg; 2000; 25(2):63-8. PubMed ID: 11140173
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Muscle blood flow and oxygen uptake in recovery from exercise.
    Bangsbo J; Hellsten Y
    Acta Physiol Scand; 1998 Mar; 162(3):305-12. PubMed ID: 9578376
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of long-term aerobic exercise on EPOC.
    LeCheminant JD; Jacobsen DJ; Bailey BW; Mayo MS; Hill JO; Smith BK; Donnelly JE
    Int J Sports Med; 2008 Jan; 29(1):53-8. PubMed ID: 17879880
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The cost of running uphill: linking organismal and muscle energy use in guinea fowl (Numida meleagris).
    Rubenson J; Henry HT; Dimoulas PM; Marsh RL
    J Exp Biol; 2006 Jul; 209(Pt 13):2395-408. PubMed ID: 16788023
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling energy expenditure and oxygen consumption in human exposure models: accounting for fatigue and EPOC.
    Isaacs K; Glen G; Mccurdy T; Smith L
    J Expo Sci Environ Epidemiol; 2008 May; 18(3):289-98. PubMed ID: 17805234
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of continuous and intermittent bouts of isocaloric cycling and running exercise on excess postexercise oxygen consumption.
    Cunha FA; Midgley AW; McNaughton LR; Farinatti PT
    J Sci Med Sport; 2016 Feb; 19(2):187-92. PubMed ID: 25747467
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Eat and run: prioritization of oxygen delivery during elevated metabolic states.
    Hicks JW; Bennett AF
    Respir Physiol Neurobiol; 2004 Dec; 144(2-3):215-24. PubMed ID: 15556104
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Energy system contribution to 1500- and 3000-metre track running.
    Duffield R; Dawson B; Goodman C
    J Sports Sci; 2005 Oct; 23(10):993-1002. PubMed ID: 16194976
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.