These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

37 related articles for article (PubMed ID: 1804112)

  • 1. Theoretical prediction on functional domains from the primary structure of enterotoxin B and correlation with experimental data.
    Tarasov VI; Alakhov VYu
    Biochem Int; 1991 Dec; 25(5):941-9. PubMed ID: 1804112
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiple binding sites on the superantigen, staphylococcal enterotoxin B, imparts versatility in binding to MHC class II molecules.
    Soos JM; Johnson HM
    Biochem Biophys Res Commun; 1994 Jun; 201(2):596-602. PubMed ID: 8002991
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of staphylococcal enterotoxin B domains involved in binding to cultured human kidney proximal tubular cells: imparting proliferation and death.
    Chatterjee S; Neill R; Shupp JW; Hammamieh R; Ionin B; Jett M
    Exp Biol Med (Maywood); 2007 Oct; 232(9):1142-51. PubMed ID: 17895522
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The crystal structure of staphylococcal enterotoxin H: implications for binding properties to MHC class II and TcR molecules.
    Hâkansson M; Petersson K; Nilsson H; Forsberg G; Björk P; Antonsson P; Svensson LA
    J Mol Biol; 2000 Sep; 302(3):527-37. PubMed ID: 10986116
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Method for prediction of protein function from sequence using the sequence-to-structure-to-function paradigm with application to glutaredoxins/thioredoxins and T1 ribonucleases.
    Fetrow JS; Skolnick J
    J Mol Biol; 1998 Sep; 281(5):949-68. PubMed ID: 9719646
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An insight into the general relationship between the three dimensional structures of enzymes and their electronic wave functions: Implication for the prediction of functional sites of enzymes.
    Fukushima K; Wada M; Sakurai M
    Proteins; 2008 Jun; 71(4):1940-54. PubMed ID: 18186466
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural basis of superantigen action inferred from crystal structure of toxic-shock syndrome toxin-1.
    Acharya KR; Passalacqua EF; Jones EY; Harlos K; Stuart DI; Brehm RD; Tranter HS
    Nature; 1994 Jan; 367(6458):94-7. PubMed ID: 8107781
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Correlation and prediction of gene expression level from amino acid and dipeptide composition of its protein.
    Raghava GP; Han JH
    BMC Bioinformatics; 2005 Mar; 6():59. PubMed ID: 15773999
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prediction of Ras-effector interactions using position energy matrices.
    Kiel C; Serrano L
    Bioinformatics; 2007 Sep; 23(17):2226-30. PubMed ID: 17599936
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Accurate prediction for atomic-level protein design and its application in diversifying the near-optimal sequence space.
    Fromer M; Yanover C
    Proteins; 2009 May; 75(3):682-705. PubMed ID: 19003998
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of binding domains on the superantigen, toxic shock syndrome-1, for class II MHC molecules.
    Soos JM; Russell JK; Jarpe MA; Pontzer CH; Johnson HM
    Biochem Biophys Res Commun; 1993 Mar; 191(3):1211-7. PubMed ID: 8466498
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bona fide prediction of aspects of protein conformation. Assigning interior and surface residues from patterns of variation and conservation in homologous protein sequences.
    Benner SA; Badcoe I; Cohen MA; Gerloff DL
    J Mol Biol; 1994 Jan; 235(3):926-58. PubMed ID: 8289328
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crystal structure of a T-cell receptor beta-chain complexed with a superantigen.
    Fields BA; Malchiodi EL; Li H; Ysern X; Stauffacher CV; Schlievert PM; Karjalainen K; Mariuzza RA
    Nature; 1996 Nov; 384(6605):188-92. PubMed ID: 8906797
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Q-SiteFinder: an energy-based method for the prediction of protein-ligand binding sites.
    Laurie AT; Jackson RM
    Bioinformatics; 2005 May; 21(9):1908-16. PubMed ID: 15701681
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [A turning point in the knowledge of the structure-function-activity relations of elastin].
    Alix AJ
    J Soc Biol; 2001; 195(2):181-93. PubMed ID: 11727705
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Use of frequency analysis for localization of functionally important regions of thermolysin].
    Gabriélian AE; Kostrov SA; Kirpichnikov MP
    Mol Biol (Mosk); 1994; 28(5):1044-51. PubMed ID: 7990826
    [TBL] [Abstract][Full Text] [Related]  

  • 17. IUPred: web server for the prediction of intrinsically unstructured regions of proteins based on estimated energy content.
    Dosztányi Z; Csizmok V; Tompa P; Simon I
    Bioinformatics; 2005 Aug; 21(16):3433-4. PubMed ID: 15955779
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of molecular recognition features (MoRFs).
    Mohan A; Oldfield CJ; Radivojac P; Vacic V; Cortese MS; Dunker AK; Uversky VN
    J Mol Biol; 2006 Oct; 362(5):1043-59. PubMed ID: 16935303
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Detection of 3D atomic similarities and their use in the discrimination of small molecule protein-binding sites.
    Najmanovich R; Kurbatova N; Thornton J
    Bioinformatics; 2008 Aug; 24(16):i105-11. PubMed ID: 18689810
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Minimum sequence requirements for selective RNA-ligand binding: a molecular mechanics algorithm using molecular dynamics and free-energy techniques.
    Anderson PC; Mecozzi S
    J Comput Chem; 2006 Nov; 27(14):1631-40. PubMed ID: 16900493
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 2.