These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 18041276)

  • 1. Automated detection of anesthetic depth levels using chaotic features with artificial neural networks.
    Lalitha V; Eswaran C
    J Med Syst; 2007 Dec; 31(6):445-52. PubMed ID: 18041276
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Elman neural networks for dynamic modeling of epileptic EEG.
    Kannathal N; Puthusserypady SK; Min LC
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():6145-8. PubMed ID: 17945939
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Monitoring the depth of anesthesia using a fuzzy neural network based on EEG].
    Li M; Ye ZQ
    Zhongguo Yi Liao Qi Xie Za Zhi; 2006 Jul; 30(4):253-5. PubMed ID: 17039930
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [The measurement of anesthetic depth].
    Guan F; Li Z
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2009 Feb; 26(1):211-5. PubMed ID: 19334589
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Monitoring the depth of anesthesia using entropy features and an artificial neural network.
    Shalbaf R; Behnam H; Sleigh JW; Steyn-Ross A; Voss LJ
    J Neurosci Methods; 2013 Aug; 218(1):17-24. PubMed ID: 23567809
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Monitoring the Depth of Anesthesia Using a New Adaptive Neurofuzzy System.
    Shalbaf A; Saffar M; Sleigh JW; Shalbaf R
    IEEE J Biomed Health Inform; 2018 May; 22(3):671-677. PubMed ID: 28574372
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Using Elman recurrent neural networks with conjugate gradient algorithm in determining the anesthetic the amount of anesthetic medicine to be applied.
    Güntürkün R
    J Med Syst; 2010 Aug; 34(4):479-84. PubMed ID: 20703901
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Use of Multiple EEG Features and Artificial Neural Network to Monitor the Depth of Anesthesia.
    Gu Y; Liang Z; Hagihira S
    Sensors (Basel); 2019 May; 19(11):. PubMed ID: 31159263
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The use of fuzzy integrals and bispectral analysis of the electroencephalogram to predict movement under anesthesia.
    Muthuswamy J; Roy RJ
    IEEE Trans Biomed Eng; 1999 Mar; 46(3):291-9. PubMed ID: 10097464
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Artificial neural network based epileptic detection using time-domain and frequency-domain features.
    Srinivasan V; Eswaran C; Sriraam N
    J Med Syst; 2005 Dec; 29(6):647-60. PubMed ID: 16235818
    [TBL] [Abstract][Full Text] [Related]  

  • 11. EEG signal processing in anaesthesia. Use of a neural network technique for monitoring depth of anaesthesia.
    Ortolani O; Conti A; Di Filippo A; Adembri C; Moraldi E; Evangelisti A; Maggini M; Roberts SJ
    Br J Anaesth; 2002 May; 88(5):644-8. PubMed ID: 12067000
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Estimation of medicine amount used anesthesia by an artificial neural network.
    Güntürkün R
    J Med Syst; 2010 Oct; 34(5):941-6. PubMed ID: 20703614
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [An anesthesia depth computing method study based on wavelet transform and artificial neural network].
    Yuan S; Ye J; Zhang X; Zhou J; Tan X; Li R; Deng Z; Ding Y
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2021 Oct; 38(5):838-847. PubMed ID: 34713651
    [TBL] [Abstract][Full Text] [Related]  

  • 14. E-Nose system for anesthetic dose level detection using artificial neural network.
    Saraoğlu HM; Edin B
    J Med Syst; 2007 Dec; 31(6):475-82. PubMed ID: 18041280
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Depth of anesthesia prediction via EEG signals using convolutional neural network and ensemble empirical mode decomposition.
    Madanu R; Rahman F; Abbod MF; Fan SZ; Shieh JS
    Math Biosci Eng; 2021 Jun; 18(5):5047-5068. PubMed ID: 34517477
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mixed-band wavelet-chaos-neural network methodology for epilepsy and epileptic seizure detection.
    Ghosh-Dastidar S; Adeli H; Dadmehr N
    IEEE Trans Biomed Eng; 2007 Sep; 54(9):1545-51. PubMed ID: 17867346
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Automatic anesthesia depth staging using entropy measures and relative power of electroencephalogram frequency bands.
    Jahanseir M; Setarehdan SK; Momenzadeh S
    Australas Phys Eng Sci Med; 2018 Dec; 41(4):919-929. PubMed ID: 30338496
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Heart rate variability-derived features based on deep neural network for distinguishing different anaesthesia states.
    Zhan J; Wu ZX; Duan ZX; Yang GY; Du ZY; Bao XH; Li H
    BMC Anesthesiol; 2021 Mar; 21(1):66. PubMed ID: 33653263
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Monitoring Depth of Anesthesia Based on Hybrid Features and Recurrent Neural Network.
    Li R; Wu Q; Liu J; Wu Q; Li C; Zhao Q
    Front Neurosci; 2020; 14():26. PubMed ID: 32116494
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Determining the amount of anesthetic medicine to be applied by using Elman's recurrent neural networks via resilient back propagation.
    Güntürkün R
    J Med Syst; 2010 Aug; 34(4):493-7. PubMed ID: 20703903
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.