These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

348 related articles for article (PubMed ID: 18041748)

  • 21. Architectural repertoire of ligand-binding pockets on protein surfaces.
    Weisel M; Kriegl JM; Schneider G
    Chembiochem; 2010 Mar; 11(4):556-63. PubMed ID: 20069621
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Identification of patients with congestive heart failure using different neural networks approaches.
    Elfadil N; Hossen A
    Technol Health Care; 2009; 17(4):305-21. PubMed ID: 19822947
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Protein-protein binding-sites prediction by protein surface structure conservation.
    Konc J; Janezic D
    J Chem Inf Model; 2007; 47(3):940-4. PubMed ID: 17388583
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Identification of protein functional surfaces by the concept of a split pocket.
    Tseng YY; Li WH
    Proteins; 2009 Sep; 76(4):959-76. PubMed ID: 19326458
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Use of variable selection in modeling the secondary structural content of proteins from their composition of amino acid residues.
    Pilizota T; Lucić B; Trinajstić N
    J Chem Inf Comput Sci; 2004; 44(1):113-21. PubMed ID: 14741017
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effective connectivity profile: a structural representation that evidences the relationship between protein structures and sequences.
    Bastolla U; Ortíz AR; Porto M; Teichert F
    Proteins; 2008 Dec; 73(4):872-88. PubMed ID: 18536008
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Detection of multiscale pockets on protein surfaces using mathematical morphology.
    Kawabata T
    Proteins; 2010 Apr; 78(5):1195-211. PubMed ID: 19938154
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Statistical geometry based prediction of nonsynonymous SNP functional effects using random forest and neuro-fuzzy classifiers.
    Barenboim M; Masso M; Vaisman II; Jamison DC
    Proteins; 2008 Jun; 71(4):1930-9. PubMed ID: 18186470
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Molecular surface generation using a variable-radius solvent probe.
    Bhat S; Purisima EO
    Proteins; 2006 Jan; 62(1):244-61. PubMed ID: 16287115
    [TBL] [Abstract][Full Text] [Related]  

  • 30. On the nature of cavities on protein surfaces: application to the identification of drug-binding sites.
    Nayal M; Honig B
    Proteins; 2006 Jun; 63(4):892-906. PubMed ID: 16477622
    [TBL] [Abstract][Full Text] [Related]  

  • 31. PocketDepth: a new depth based algorithm for identification of ligand binding sites in proteins.
    Kalidas Y; Chandra N
    J Struct Biol; 2008 Jan; 161(1):31-42. PubMed ID: 17949996
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Protein surface conservation in binding sites.
    Carl N; Konc J; Janezic D
    J Chem Inf Model; 2008 Jun; 48(6):1279-86. PubMed ID: 18476685
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Prediction of protein structural classes by Chou's pseudo amino acid composition: approached using continuous wavelet transform and principal component analysis.
    Li ZC; Zhou XB; Dai Z; Zou XY
    Amino Acids; 2009 Jul; 37(2):415-25. PubMed ID: 18726140
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Self-organizing hierarchic networks for pattern recognition in protein sequence.
    Hanke J; Beckmann G; Bork P; Reich JG
    Protein Sci; 1996 Jan; 5(1):72-82. PubMed ID: 8771198
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A method to detect important residues using protein binding site comparison.
    Park K; Kim D
    Genome Inform; 2006; 17(2):216-25. PubMed ID: 17503394
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Amino acid architecture and the distribution of polar atoms on the surfaces of proteins.
    Shanahan HP; Thornton JM
    Biopolymers; 2005 Aug; 78(6):318-28. PubMed ID: 15898105
    [TBL] [Abstract][Full Text] [Related]  

  • 37. SitePrint: three-dimensional pharmacophore descriptors derived from protein binding sites for family based active site analysis, classification, and drug design.
    Arnold JR; Burdick KW; Pegg SC; Toba S; Lamb ML; Kuntz ID
    J Chem Inf Comput Sci; 2004; 44(6):2190-8. PubMed ID: 15554689
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A method for localizing ligand binding pockets in protein structures.
    Glaser F; Morris RJ; Najmanovich RJ; Laskowski RA; Thornton JM
    Proteins; 2006 Feb; 62(2):479-88. PubMed ID: 16304646
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Evolutionary patterns of retinal-binding pockets of type I rhodopsins and their functions.
    Adamian L; Ouyang Z; Tseng YY; Liang J
    Photochem Photobiol; 2006; 82(6):1426-35. PubMed ID: 16922602
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Analysis of protein-protein interaction sites using surface patches.
    Jones S; Thornton JM
    J Mol Biol; 1997 Sep; 272(1):121-32. PubMed ID: 9299342
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.