These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 18041851)

  • 1. Rupture work of pendular bridges.
    de Boer PC; de Boer MP
    Langmuir; 2008 Jan; 24(1):160-9. PubMed ID: 18041851
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling the Evolution and Rupture of Pendular Liquid Bridges in the Presence of Large Wetting Hysteresis.
    Pepin X; Rossetti D; Iveson SM; Simons SJ
    J Colloid Interface Sci; 2000 Dec; 232(2):289-297. PubMed ID: 11097763
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Capillary forces between chemically different substrates.
    De Souza EJ; Brinkmann M; Mohrdieck C; Crosby A; Arzt E
    Langmuir; 2008 Sep; 24(18):10161-8. PubMed ID: 18698863
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Capillary force between wetted nanometric contacts and its application to atomic force microscopy.
    Crassous J; Ciccotti M; Charlaix E
    Langmuir; 2011 Apr; 27(7):3468-73. PubMed ID: 21370887
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Volume of a nanoscale water bridge.
    Sirghi L; Szoszkiewicz R; Riedo E
    Langmuir; 2006 Jan; 22(3):1093-8. PubMed ID: 16430270
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A partial equilibrium theory for liquids bonded to immobile solids.
    Searcy AW; Beruto DT; Barberis F
    J Chem Phys; 2009 May; 130(18):184713. PubMed ID: 19449949
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evolution of surface area-to-volume ratio for a water meniscus evaporating between contacting silica spheres.
    Cutts RE; Burns SE
    J Colloid Interface Sci; 2010 Mar; 343(1):298-300. PubMed ID: 19963221
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Shear distortion and failure of capillary bridges. Wetting information beyond contact angle analysis.
    Wang L; McCarthy TJ
    Langmuir; 2013 Jun; 29(25):7776-81. PubMed ID: 23692651
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Systematically altering the hydrophobic nanobubble bridging capillary force from attractive to repulsive.
    Hampton MA; Nguyen AV
    J Colloid Interface Sci; 2009 May; 333(2):800-6. PubMed ID: 19215936
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Normal capillary forces.
    Butt HJ; Kappl M
    Adv Colloid Interface Sci; 2009 Feb; 146(1-2):48-60. PubMed ID: 19022419
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrical conductance study of theta-liquid bridges.
    Evgenidis SP; Kostoglou M; Karapantsios TD
    J Colloid Interface Sci; 2006 Oct; 302(2):597-604. PubMed ID: 16854428
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A modified Cassie-Baxter relationship to explain contact angle hysteresis and anisotropy on non-wetting textured surfaces.
    Choi W; Tuteja A; Mabry JM; Cohen RE; McKinley GH
    J Colloid Interface Sci; 2009 Nov; 339(1):208-16. PubMed ID: 19683717
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermodynamics of capillary adhesion between rough surfaces.
    de Boer MP; de Boer PC
    J Colloid Interface Sci; 2007 Jul; 311(1):171-85. PubMed ID: 17368659
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Theory of axisymmetric pendular rings.
    Rubinstein BY; Fel LG
    J Colloid Interface Sci; 2014 Mar; 417():37-50. PubMed ID: 24407657
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Drop size effect on contact angle explained by nonextensive thermodynamics. Young's equation revisited.
    Letellier P; Mayaffre A; Turmine M
    J Colloid Interface Sci; 2007 Oct; 314(2):604-14. PubMed ID: 17624363
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhancement of capillary forces by multiple liquid bridges.
    De Souza EJ; Brinkmann M; Mohrdieck C; Arzt E
    Langmuir; 2008 Aug; 24(16):8813-20. PubMed ID: 18646873
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Capillary rise between planar surfaces.
    Bullard JW; Garboczi EJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jan; 79(1 Pt 1):011604. PubMed ID: 19257042
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rupture kinetics of liquid bridges during a pulling process: a kinetic density functional theory study.
    Men Y; Zhang X; Wang W
    J Chem Phys; 2011 Mar; 134(12):124704. PubMed ID: 21456692
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The capillary bridge between two spheres: New closed-form equations in a two century old problem.
    Lian G; Seville J
    Adv Colloid Interface Sci; 2016 Jan; 227():53-62. PubMed ID: 26684365
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rupture energy and wetting behavior of pendular liquid bridges in relation to the spherical agglomeration process.
    Rossetti D; Pepin X; Simons SJ
    J Colloid Interface Sci; 2003 May; 261(1):161-9. PubMed ID: 12725836
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.