These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 18042202)

  • 1. Automatic discrimination of fine roots in minirhizotron images.
    Zeng G; Birchfield ST; Wells CE
    New Phytol; 2008; 177(2):549-557. PubMed ID: 18042202
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Growth patterns and morphology of fine roots of size-controlling and invigorating peach rootstocks.
    Basile B; Bryla DR; Salsman ML; Marsal J; Cirillo C; Johnson RS; Dejong TM
    Tree Physiol; 2007 Feb; 27(2):231-41. PubMed ID: 17241965
    [TBL] [Abstract][Full Text] [Related]  

  • 3. As good as human experts in detecting plant roots in minirhizotron images but efficient and reproducible: the convolutional neural network "RootDetector".
    Peters B; Blume-Werry G; Gillert A; Schwieger S; von Lukas UF; Kreyling J
    Sci Rep; 2023 Jan; 13(1):1399. PubMed ID: 36697423
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Advancing fine root research with minirhizotrons.
    Johnson MG; Tingey DT; Phillips DL; Storm MJ
    Environ Exp Bot; 2001 Jun; 45(3):263-289. PubMed ID: 11323033
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Automatic segmentation of cotton roots in high-resolution minirhizotron images based on improved OCRNet.
    Huang Y; Yan J; Zhang Y; Ye W; Zhang C; Gao P; Lv X
    Front Plant Sci; 2023; 14():1147034. PubMed ID: 37235030
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lorentzian model of roots for understory yellow birch and sugar maple saplings.
    Cheng S
    J Theor Biol; 2007 May; 246(2):309-22. PubMed ID: 17289079
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Application of minirhizotron in fine root studies].
    Shi J; Yu L; Yu S; Han Y; Wang Z; Guo D
    Ying Yong Sheng Tai Xue Bao; 2006 Apr; 17(4):715-9. PubMed ID: 16836108
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Traceable calibration, performance metrics, and uncertainty estimates of minirhizotron digital imagery for fine-root measurements.
    Roberti JA; SanClements MD; Loescher HW; Ayres E
    PLoS One; 2014; 9(11):e112362. PubMed ID: 25391023
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Installation and imaging of thousands of minirhizotrons to phenotype root systems of field-grown plants.
    Rajurkar AB; McCoy SM; Ruhter J; Mulcrone J; Freyfogle L; Leakey ADB
    Plant Methods; 2022 Mar; 18(1):39. PubMed ID: 35346269
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Foraging strategies in trees of different root morphology: the role of root lifespan.
    Adams TS; McCormack ML; Eissenstat DM
    Tree Physiol; 2013 Sep; 33(9):940-8. PubMed ID: 24128849
    [TBL] [Abstract][Full Text] [Related]  

  • 11. SoilCam: A Fully Automated Minirhizotron using Multispectral Imaging for Root Activity Monitoring.
    Rahman G; Sohag H; Chowdhury R; Wahid KA; Dinh A; Arcand M; Vail S
    Sensors (Basel); 2020 Jan; 20(3):. PubMed ID: 32023975
    [TBL] [Abstract][Full Text] [Related]  

  • 12. EnRoot: a narrow-diameter, inexpensive and partially 3D-printable minirhizotron for imaging fine root production.
    Arnaud M; Baird AJ; Morris PJ; Harris A; Huck JJ
    Plant Methods; 2019; 15():101. PubMed ID: 31467587
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adaptive minirhizotron for pepper roots observation and its installation based on root system architecture traits.
    Lu W; Wang X; Wang F
    Plant Methods; 2019; 15():29. PubMed ID: 30949230
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimizing minirhizotron sample frequency for an evergreen and deciduous tree species.
    Tingey DT; Phillips DL; Johnson MG
    New Phytol; 2003 Jan; 157(1):155-161. PubMed ID: 33873694
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development and Validation of a Deep Learning Based Automated Minirhizotron Image Analysis Pipeline.
    Bauer FM; Lärm L; Morandage S; Lobet G; Vanderborght J; Vereecken H; Schnepf A
    Plant Phenomics; 2022; 2022():9758532. PubMed ID: 35693120
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of biochar and nitrogen on fine root morphology, physiology, and chemistry of Acer mono.
    Razaq M; Salahuddin ; Shen HL; Sher H; Zhang P
    Sci Rep; 2017 Jul; 7(1):5367. PubMed ID: 28710473
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The impact of material used for minirhizotron tubes for root research.
    Withington JM; Elkin AD; Bułaj B; Olesiński J; Tracy KN; Bouma TJ; Oleksyn J; Anderson LJ; Modrzyński J; Reich PB; Eissenstat DM
    New Phytol; 2003 Dec; 160(3):533-544. PubMed ID: 33873660
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Senescence-related changes in nitrogen in fine roots: mass loss affects estimation.
    Kunkle JM; Walters MB; Kobe RK
    Tree Physiol; 2009 May; 29(5):715-23. PubMed ID: 19203982
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Changes in the risk of fine-root mortality with age: a case study in peach, Prunus persica (Rosaceae).
    Wells CE; Glenn DM; Eissenstat DM
    Am J Bot; 2002 Jan; 89(1):79-87. PubMed ID: 21669714
    [TBL] [Abstract][Full Text] [Related]  

  • 20. GiA Roots: software for the high throughput analysis of plant root system architecture.
    Galkovskyi T; Mileyko Y; Bucksch A; Moore B; Symonova O; Price CA; Topp CN; Iyer-Pascuzzi AS; Zurek PR; Fang S; Harer J; Benfey PN; Weitz JS
    BMC Plant Biol; 2012 Jul; 12():116. PubMed ID: 22834569
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.