BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 18042459)

  • 21. The PerR transcription factor senses H2O2 by metal-catalysed histidine oxidation.
    Lee JW; Helmann JD
    Nature; 2006 Mar; 440(7082):363-7. PubMed ID: 16541078
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The crystal structure of XC1739: a putative multiple antibiotic-resistance repressor (MarR) from Xanthomonas campestris at 1.8 A resolution.
    Chin KH; Tu ZL; Li JN; Chou CC; Wang AH; Chou SH
    Proteins; 2006 Oct; 65(1):239-42. PubMed ID: 16862595
    [No Abstract]   [Full Text] [Related]  

  • 23. Crystal structure of a putative acyl-CoA thioesterase from Xanthomonas campestris (XC229) adopts a tetrameric hotdog fold of epsilongamma mode.
    Chin KH; Chou CC; Wang AH; Chou SH
    Proteins; 2006 Aug; 64(3):823-6. PubMed ID: 16763992
    [No Abstract]   [Full Text] [Related]  

  • 24. Conversion of Bacillus subtilis OhrR from a 1-Cys to a 2-Cys peroxide sensor.
    Soonsanga S; Lee JW; Helmann JD
    J Bacteriol; 2008 Sep; 190(17):5738-45. PubMed ID: 18586944
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Novel roles of ohrR-ohr in Xanthomonas sensing, metabolism, and physiological adaptive response to lipid hydroperoxide.
    Klomsiri C; Panmanee W; Dharmsthiti S; Vattanaviboon P; Mongkolsuk S
    J Bacteriol; 2005 May; 187(9):3277-81. PubMed ID: 15838057
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The OhrR repressor senses organic hydroperoxides by reversible formation of a cysteine-sulfenic acid derivative.
    Fuangthong M; Helmann JD
    Proc Natl Acad Sci U S A; 2002 May; 99(10):6690-5. PubMed ID: 11983871
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Analyses of the regulatory mechanism and physiological roles of Pseudomonas aeruginosa OhrR, a transcription regulator and a sensor of organic hydroperoxides.
    Atichartpongkul S; Fuangthong M; Vattanaviboon P; Mongkolsuk S
    J Bacteriol; 2010 Apr; 192(8):2093-101. PubMed ID: 20139188
    [TBL] [Abstract][Full Text] [Related]  

  • 28. PerR vs OhrR: selective peroxide sensing in Bacillus subtilis.
    Duarte V; Latour JM
    Mol Biosyst; 2010 Feb; 6(2):316-23. PubMed ID: 20094649
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Global Transcriptional Response to Organic Hydroperoxide and the Role of OhrR in the Control of Virulence Traits in Chromobacterium violaceum.
    Previato-Mello M; Meireles DA; Netto LES; da Silva Neto JF
    Infect Immun; 2017 Aug; 85(8):. PubMed ID: 28507067
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The X-ray crystal structure of PA1374 from Pseudomonas aeruginosa, a putative oxidative-stress sensing transcriptional regulator.
    Kim H; Choe J
    Biochem Biophys Res Commun; 2013 Feb; 431(3):376-81. PubMed ID: 23337505
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Co-regulation of Xanthomonas campestris virulence by quorum sensing and a novel two-component regulatory system RavS/RavR.
    He YW; Boon C; Zhou L; Zhang LH
    Mol Microbiol; 2009 Mar; 71(6):1464-76. PubMed ID: 19220743
    [TBL] [Abstract][Full Text] [Related]  

  • 32. OhrR is a repressor of ohrA, a key organic hydroperoxide resistance determinant in Bacillus subtilis.
    Fuangthong M; Atichartpongkul S; Mongkolsuk S; Helmann JD
    J Bacteriol; 2001 Jul; 183(14):4134-41. PubMed ID: 11418552
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Crystal structure of the arginine repressor protein in complex with the DNA operator from Mycobacterium tuberculosis.
    Cherney LT; Cherney MM; Garen CR; Lu GJ; James MN
    J Mol Biol; 2008 Dec; 384(5):1330-40. PubMed ID: 18952097
    [TBL] [Abstract][Full Text] [Related]  

  • 34. XC5848, an ORFan protein from Xanthomonas campestris, adopts a novel variant of Sm-like motif.
    Chin KH; Ruan SK; Wang AH; Chou SH
    Proteins; 2007 Sep; 68(4):1006-10. PubMed ID: 17546661
    [No Abstract]   [Full Text] [Related]  

  • 35. Redox sensing and histidine oxidation: no longer PerR-fect strangers.
    Moye-Rowley WS
    Nat Chem Biol; 2006 May; 2(5):234-5. PubMed ID: 16619021
    [No Abstract]   [Full Text] [Related]  

  • 36. Structural insight on the mechanism of regulation of the MarR family of proteins: high-resolution crystal structure of a transcriptional repressor from Methanobacterium thermoautotrophicum.
    Saridakis V; Shahinas D; Xu X; Christendat D
    J Mol Biol; 2008 Mar; 377(3):655-67. PubMed ID: 18272181
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A phospho-sugar binding domain homologous to NagB enzymes regulates the activity of the central glycolytic genes repressor.
    Doan T; Martin L; Zorrilla S; Chaix D; Aymerich S; Labesse G; Declerck N
    Proteins; 2008 Jun; 71(4):2038-50. PubMed ID: 18186488
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Structure of the Bacillus subtilis OhrB hydroperoxide-resistance protein in a fully oxidized state.
    Cooper DR; Surendranath Y; Devedjiev Y; Bielnicki J; Derewenda ZS
    Acta Crystallogr D Biol Crystallogr; 2007 Dec; 63(Pt 12):1269-73. PubMed ID: 18084074
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Crystal structure of the IrrE protein, a central regulator of DNA damage repair in deinococcaceae.
    Vujicić-Zagar A; Dulermo R; Le Gorrec M; Vannier F; Servant P; Sommer S; de Groot A; Serre L
    J Mol Biol; 2009 Feb; 386(3):704-16. PubMed ID: 19150362
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Tet repressor induction by tetracycline: a molecular dynamics, continuum electrostatics, and crystallographic study.
    Aleksandrov A; Schuldt L; Hinrichs W; Simonson T
    J Mol Biol; 2008 May; 378(4):898-912. PubMed ID: 18395746
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.