BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1417 related articles for article (PubMed ID: 18042490)

  • 1. Novel inhibitor for prolyl tripeptidyl aminopeptidase from Porphyromonas gingivalis and details of substrate-recognition mechanism.
    Xu Y; Nakajima Y; Ito K; Zheng H; Oyama H; Heiser U; Hoffmann T; Gärtner UT; Demuth HU; Yoshimoto T
    J Mol Biol; 2008 Jan; 375(3):708-19. PubMed ID: 18042490
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Crystal structure and mechanism of tripeptidyl activity of prolyl tripeptidyl aminopeptidase from Porphyromonas gingivalis.
    Ito K; Nakajima Y; Xu Y; Yamada N; Onohara Y; Ito T; Matsubara F; Kabashima T; Nakayama K; Yoshimoto T
    J Mol Biol; 2006 Sep; 362(2):228-40. PubMed ID: 16914159
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Crystal structure of a pyrimidine dimer-specific excision repair enzyme from bacteriophage T4: refinement at 1.45 A and X-ray analysis of the three active site mutants.
    Morikawa K; Ariyoshi M; Vassylyev DG; Matsumoto O; Katayanagi K; Ohtsuka E
    J Mol Biol; 1995 Jun; 249(2):360-75. PubMed ID: 7783199
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pronounced conversion of the metal-specific activity of superoxide dismutase from Porphyromonas gingivalis by the mutation of a single amino acid (Gly155Thr) located apart from the active site.
    Yamakura F; Sugio S; Hiraoka BY; Ohmori D; Yokota T
    Biochemistry; 2003 Sep; 42(36):10790-9. PubMed ID: 12962504
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crystal structures of the wild type and the Glu376Gly/Thr255Glu mutant of human medium-chain acyl-CoA dehydrogenase: influence of the location of the catalytic base on substrate specificity.
    Lee HJ; Wang M; Paschke R; Nandy A; Ghisla S; Kim JJ
    Biochemistry; 1996 Sep; 35(38):12412-20. PubMed ID: 8823176
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Compromise and accommodation in ecotin, a dimeric macromolecular inhibitor of serine proteases.
    Gillmor SA; Takeuchi T; Yang SQ; Craik CS; Fletterick RJ
    J Mol Biol; 2000 Jun; 299(4):993-1003. PubMed ID: 10843853
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure of monkey dimeric dihydrodiol dehydrogenase in complex with isoascorbic acid.
    Carbone V; Sumii R; Ishikura S; Asada Y; Hara A; El-Kabbani O
    Acta Crystallogr D Biol Crystallogr; 2008 May; 64(Pt 5):532-42. PubMed ID: 18453689
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural basis for the substrate specificity of a Bacillus 1,3-1,4-beta-glucanase.
    Gaiser OJ; Piotukh K; Ponnuswamy MN; Planas A; Borriss R; Heinemann U
    J Mol Biol; 2006 Apr; 357(4):1211-25. PubMed ID: 16483609
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crystal structure of a glutamate/aspartate binding protein complexed with a glutamate molecule: structural basis of ligand specificity at atomic resolution.
    Hu Y; Fan CP; Fu G; Zhu D; Jin Q; Wang DC
    J Mol Biol; 2008 Sep; 382(1):99-111. PubMed ID: 18640128
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel serine protease inhibition motif involving a multi-centered short hydrogen bonding network at the active site.
    Katz BA; Elrod K; Luong C; Rice MJ; Mackman RL; Sprengeler PA; Spencer J; Hataye J; Janc J; Link J; Litvak J; Rai R; Rice K; Sideris S; Verner E; Young W
    J Mol Biol; 2001 Apr; 307(5):1451-86. PubMed ID: 11292354
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of Arg-96 in Danio rerio creatine kinase in substrate recognition and active center configuration.
    Uda K; Kuwasaki A; Shima K; Matsumoto T; Suzuki T
    Int J Biol Macromol; 2009 Jun; 44(5):413-8. PubMed ID: 19428475
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure of a complex of Thermoactinomyces vulgaris R-47 alpha-amylase 2 with maltohexaose demonstrates the important role of aromatic residues at the reducing end of the substrate binding cleft.
    Ohtaki A; Mizuno M; Yoshida H; Tonozuka T; Sakano Y; Kamitori S
    Carbohydr Res; 2006 Jun; 341(8):1041-6. PubMed ID: 16564038
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crystal structure of human ornithine aminotransferase complexed with the highly specific and potent inhibitor 5-fluoromethylornithine.
    Storici P; Capitani G; Müller R; Schirmer T; Jansonius JN
    J Mol Biol; 1999 Jan; 285(1):297-309. PubMed ID: 9878407
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional and structural features of the oxyanion hole in a thermophilic esterase from Alicyclobacillus acidocaldarius.
    Mandrich L; Menchise V; Alterio V; De Simone G; Pedone C; Rossi M; Manco G
    Proteins; 2008 Jun; 71(4):1721-31. PubMed ID: 18076040
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A single amino acid substitution in the human and a bacterial hypoxanthine phosphoribosyltransferase modulates specificity for the binding of guanine.
    Lee CC; Craig SP; Eakin AE
    Biochemistry; 1998 Mar; 37(10):3491-8. PubMed ID: 9521670
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crystal structure of the stromelysin catalytic domain at 2.0 A resolution: inhibitor-induced conformational changes.
    Chen L; Rydel TJ; Gu F; Dunaway CM; Pikul S; Dunham KM; Barnett BL
    J Mol Biol; 1999 Oct; 293(3):545-57. PubMed ID: 10543949
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanisms for ligand binding to GluR0 ion channels: crystal structures of the glutamate and serine complexes and a closed apo state.
    Mayer ML; Olson R; Gouaux E
    J Mol Biol; 2001 Aug; 311(4):815-36. PubMed ID: 11518533
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protease C of Erwinia chrysanthemi: the crystal structure and role of amino acids Y228 and E189.
    Hege T; Baumann U
    J Mol Biol; 2001 Nov; 314(2):187-93. PubMed ID: 11718553
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crystal structures of branched-chain amino acid aminotransferase complexed with glutamate and glutarate: true reaction intermediate and double substrate recognition of the enzyme.
    Goto M; Miyahara I; Hayashi H; Kagamiyama H; Hirotsu K
    Biochemistry; 2003 Apr; 42(13):3725-33. PubMed ID: 12667063
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The strength of dehalogenase-substrate hydrogen bonding correlates with the rate of Meisenheimer intermediate formation.
    Dong J; Lu X; Wei Y; Luo L; Dunaway-Mariano D; Carey PR
    Biochemistry; 2003 Aug; 42(31):9482-90. PubMed ID: 12899635
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 71.