BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 18042543)

  • 1. The regulatory element in the 3'-untranslated region of human papillomavirus 16 inhibits expression by binding CUG-binding protein 1.
    Goraczniak R; Gunderson SI
    J Biol Chem; 2008 Jan; 283(4):2286-96. PubMed ID: 18042543
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conserved GU-rich elements mediate mRNA decay by binding to CUG-binding protein 1.
    Vlasova IA; Tahoe NM; Fan D; Larsson O; Rattenbacher B; Sternjohn JR; Vasdewani J; Karypis G; Reilly CS; Bitterman PB; Bohjanen PR
    Mol Cell; 2008 Feb; 29(2):263-70. PubMed ID: 18243120
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Activity of the human papillomavirus type 16 late negative regulatory element is partly due to four weak consensus 5' splice sites that bind a U1 snRNP-like complex.
    Cumming SA; McPhillips MG; Veerapraditsin T; Milligan SG; Graham SV
    J Virol; 2003 May; 77(9):5167-77. PubMed ID: 12692219
    [TBL] [Abstract][Full Text] [Related]  

  • 4. GU-rich RNA: expanding CUGBP1 function, broadening mRNA turnover.
    Kim HH; Gorospe M
    Mol Cell; 2008 Feb; 29(2):151-2. PubMed ID: 18243108
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of CUGBP1 targets identifies GU-repeat sequences that mediate rapid mRNA decay.
    Rattenbacher B; Beisang D; Wiesner DL; Jeschke JC; von Hohenberg M; St Louis-Vlasova IA; Bohjanen PR
    Mol Cell Biol; 2010 Aug; 30(16):3970-80. PubMed ID: 20547756
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sequences homologous to 5' splice sites are required for the inhibitory activity of papillomavirus late 3' untranslated regions.
    Furth PA; Choe WT; Rex JH; Byrne JC; Baker CC
    Mol Cell Biol; 1994 Aug; 14(8):5278-89. PubMed ID: 8035806
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A bipartite U1 site represses U1A expression by synergizing with PIE to inhibit nuclear polyadenylation.
    Guan F; Caratozzolo RM; Goraczniak R; Ho ES; Gunderson SI
    RNA; 2007 Dec; 13(12):2129-40. PubMed ID: 17942741
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of CUG-binding protein 1 (CUGBP1) binding to target transcripts upon T cell activation.
    Beisang D; Rattenbacher B; Vlasova-St Louis IA; Bohjanen PR
    J Biol Chem; 2012 Jan; 287(2):950-60. PubMed ID: 22117072
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of overlapping U1 and U11 5' splice site sequences in a negative regulator of splicing.
    Hibbert CS; Gontarek RR; Beemon KL
    RNA; 1999 Mar; 5(3):333-43. PubMed ID: 10094303
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Competitive binding of CUGBP1 and HuR to occludin mRNA controls its translation and modulates epithelial barrier function.
    Yu TX; Rao JN; Zou T; Liu L; Xiao L; Ouyang M; Cao S; Gorospe M; Wang JY
    Mol Biol Cell; 2013 Jan; 24(2):85-99. PubMed ID: 23155001
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Position-dependent inhibition of the cleavage step of pre-mRNA 3'-end processing by U1 snRNP.
    Vagner S; Rüegsegger U; Gunderson SI; Keller W; Mattaj IW
    RNA; 2000 Feb; 6(2):178-88. PubMed ID: 10688357
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Alternative polyadenylation regulates CELF1/CUGBP1 target transcripts following T cell activation.
    Beisang D; Reilly C; Bohjanen PR
    Gene; 2014 Oct; 550(1):93-100. PubMed ID: 25123787
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Heterogeneous nuclear ribonucleoprotein C binds exclusively to the functionally important UUUUU-motifs in the human papillomavirus type-1 AU-rich inhibitory element.
    Sokolowski M; Schwartz S
    Virus Res; 2001 Mar; 73(2):163-75. PubMed ID: 11172920
    [TBL] [Abstract][Full Text] [Related]  

  • 14. miR-503 represses CUG-binding protein 1 translation by recruiting CUGBP1 mRNA to processing bodies.
    Cui YH; Xiao L; Rao JN; Zou T; Liu L; Chen Y; Turner DJ; Gorospe M; Wang JY
    Mol Biol Cell; 2012 Jan; 23(1):151-62. PubMed ID: 22072795
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A 57-nucleotide upstream early polyadenylation element in human papillomavirus type 16 interacts with hFip1, CstF-64, hnRNP C1/C2, and polypyrimidine tract binding protein.
    Zhao X; Oberg D; Rush M; Fay J; Lambkin H; Schwartz S
    J Virol; 2005 Apr; 79(7):4270-88. PubMed ID: 15767428
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Heterogeneous Nuclear Ribonucleoprotein C Proteins Interact with the Human Papillomavirus Type 16 (HPV16) Early 3'-Untranslated Region and Alleviate Suppression of HPV16 Late L1 mRNA Splicing.
    Dhanjal S; Kajitani N; Glahder J; Mossberg AK; Johansson C; Schwartz S
    J Biol Chem; 2015 May; 290(21):13354-71. PubMed ID: 25878250
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A complex immunodeficiency is based on U1 snRNP-mediated poly(A) site suppression.
    Langemeier J; Schrom EM; Rabner A; Radtke M; Zychlinski D; Saborowski A; Bohn G; Mandel-Gutfreund Y; Bodem J; Klein C; Bohne J
    EMBO J; 2012 Oct; 31(20):4035-44. PubMed ID: 22968171
    [TBL] [Abstract][Full Text] [Related]  

  • 18. HPV-16 E2 contributes to induction of HPV-16 late gene expression by inhibiting early polyadenylation.
    Johansson C; Somberg M; Li X; Backström Winquist E; Fay J; Ryan F; Pim D; Banks L; Schwartz S
    EMBO J; 2012 May; 31(14):3212-27. PubMed ID: 22617423
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Systematic analysis of cis-elements in unstable mRNAs demonstrates that CUGBP1 is a key regulator of mRNA decay in muscle cells.
    Lee JE; Lee JY; Wilusz J; Tian B; Wilusz CJ
    PLoS One; 2010 Jun; 5(6):e11201. PubMed ID: 20574513
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Host protein interactions with the 3' end of bovine coronavirus RNA and the requirement of the poly(A) tail for coronavirus defective genome replication.
    Spagnolo JF; Hogue BG
    J Virol; 2000 Jun; 74(11):5053-65. PubMed ID: 10799579
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.