BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

659 related articles for article (PubMed ID: 18042710)

  • 1. In vivo multiphoton microscopy of NADH and FAD redox states, fluorescence lifetimes, and cellular morphology in precancerous epithelia.
    Skala MC; Riching KM; Gendron-Fitzpatrick A; Eickhoff J; Eliceiri KW; White JG; Ramanujam N
    Proc Natl Acad Sci U S A; 2007 Dec; 104(49):19494-9. PubMed ID: 18042710
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vivo multiphoton fluorescence lifetime imaging of protein-bound and free nicotinamide adenine dinucleotide in normal and precancerous epithelia.
    Skala MC; Riching KM; Bird DK; Gendron-Fitzpatrick A; Eickhoff J; Eliceiri KW; Keely PJ; Ramanujam N
    J Biomed Opt; 2007; 12(2):024014. PubMed ID: 17477729
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantifying Age-Related Changes in Skin Wound Metabolism Using
    Jones JD; Ramser HE; Woessner AE; Veves A; Quinn KP
    Adv Wound Care (New Rochelle); 2020 Mar; 9(3):90-102. PubMed ID: 31993251
    [No Abstract]   [Full Text] [Related]  

  • 4. Single-cell redox states analyzed by fluorescence lifetime metrics and tryptophan FRET interaction with NAD(P)H.
    Cao R; Wallrabe H; Siller K; Rehman Alam S; Periasamy A
    Cytometry A; 2019 Jan; 95(1):110-121. PubMed ID: 30604477
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multiphoton FLIM imaging of NAD(P)H and FAD with one excitation wavelength.
    Cao R; Wallrabe H; Periasamy A
    J Biomed Opt; 2020 Jan; 25(1):1-16. PubMed ID: 31920048
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Label-Free Optical Metabolic Imaging in Cells and Tissues.
    Georgakoudi I; Quinn KP
    Annu Rev Biomed Eng; 2023 Jun; 25():413-443. PubMed ID: 37104650
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multiphoton redox ratio imaging for metabolic monitoring in vivo.
    Skala M; Ramanujam N
    Methods Mol Biol; 2010; 594():155-62. PubMed ID: 20072916
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ex vivo optical metabolic measurements from cultured tissue reflect in vivo tissue status.
    Walsh AJ; Poole KM; Duvall CL; Skala MC
    J Biomed Opt; 2012 Nov; 17(11):116015. PubMed ID: 23117810
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of endogenous fluorescence in nonsmall lung cancerous cells: A comparison with nonmalignant lung normal cells.
    Awasthi K; Chang FL; Hsieh PY; Hsu HY; Ohta N
    J Biophotonics; 2020 May; 13(5):e201960210. PubMed ID: 32067342
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multiphoton microscopy of endogenous fluorescence differentiates normal, precancerous, and cancerous squamous epithelial tissues.
    Skala MC; Squirrell JM; Vrotsos KM; Eickhoff JC; Gendron-Fitzpatrick A; Eliceiri KW; Ramanujam N
    Cancer Res; 2005 Feb; 65(4):1180-6. PubMed ID: 15735001
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Autofluorescence lifetime imaging of cellular metabolism: Sensitivity toward cell density, pH, intracellular, and intercellular heterogeneity.
    Chacko JV; Eliceiri KW
    Cytometry A; 2019 Jan; 95(1):56-69. PubMed ID: 30296355
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two-photon FLIM of NAD(P)H and FAD in mesenchymal stem cells undergoing either osteogenic or chondrogenic differentiation.
    Meleshina AV; Dudenkova VV; Bystrova AS; Kuznetsova DS; Shirmanova MV; Zagaynova EV
    Stem Cell Res Ther; 2017 Jan; 8(1):15. PubMed ID: 28129796
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Using in vivo multiphoton fluorescence lifetime imaging to unravel disease-specific changes in the liver redox state.
    Barkauskas DS; Medley G; Liang X; Mohammed YH; Thorling CA; Wang H; Roberts MS
    Methods Appl Fluoresc; 2020 Jul; 8(3):034003. PubMed ID: 32422610
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bioenergetic Alterations of Metabolic Redox Coenzymes as NADH, FAD and FMN by Means of Fluorescence Lifetime Imaging Techniques.
    Kalinina S; Freymueller C; Naskar N; von Einem B; Reess K; Sroka R; Rueck A
    Int J Mol Sci; 2021 May; 22(11):. PubMed ID: 34073057
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optical metabolic imaging of treatment response in human head and neck squamous cell carcinoma.
    Shah AT; Demory Beckler M; Walsh AJ; Jones WP; Pohlmann PR; Skala MC
    PLoS One; 2014; 9(3):e90746. PubMed ID: 24595244
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vivo monitoring the changes of interstitial pH and FAD/NADH ratio by fluorescence spectroscopy in healing skin wounds.
    Mokrý M; Gál P; Vidinský B; Kusnír J; Dubayová K; Mozes S; Sabo J
    Photochem Photobiol; 2006; 82(3):793-7. PubMed ID: 16435883
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Automated biochemical, morphological, and organizational assessment of precancerous changes from endogenous two-photon fluorescence images.
    Levitt JM; McLaughlin-Drubin ME; Münger K; Georgakoudi I
    PLoS One; 2011; 6(9):e24765. PubMed ID: 21931846
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polarization gating technique extracts depth resolved fluorescence redox ratio in oral cancer diagnostics.
    Gnanatheepam E; Kanniyappan U; Dornadula K; Prakasarao A; Singaravelu G
    Photodiagnosis Photodyn Ther; 2020 Jun; 30():101757. PubMed ID: 32335189
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vivo fluorescence lifetime imaging of macrophage intracellular metabolism during wound responses in zebrafish.
    Miskolci V; Tweed KE; Lasarev MR; Britt EC; Walsh AJ; Zimmerman LJ; McDougal CE; Cronan MR; Fan J; Sauer JD; Skala MC; Huttenlocher A
    Elife; 2022 Feb; 11():. PubMed ID: 35200139
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluating Cell Metabolism Through Autofluorescence Imaging of NAD(P)H and FAD.
    Kolenc OI; Quinn KP
    Antioxid Redox Signal; 2019 Feb; 30(6):875-889. PubMed ID: 29268621
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 33.