These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
110 related articles for article (PubMed ID: 1804281)
21. Z band dynamics as a function of sarcomere length and the contractile state of muscle. Goldstein MA; Michael LH; Schroeter JP; Sass RL FASEB J; 1987 Aug; 1(2):133-42. PubMed ID: 3609610 [TBL] [Abstract][Full Text] [Related]
22. Two-dimensional time resolved X-ray diffraction of muscle: recent results. Bordas J; Diakun GP; Harries JE; Lewis RA; Mant GR; Martin-Fernandez ML; Towns-Andrews E Adv Biophys; 1991; 27():15-33. PubMed ID: 1755357 [TBL] [Abstract][Full Text] [Related]
23. Energetics of activation in frog skeletal muscle at sarcomere lengths beyond myofilament overlap. Burchfield DM; Rall JA Biophys J; 1985 Dec; 48(6):1049-51. PubMed ID: 3879188 [TBL] [Abstract][Full Text] [Related]
24. The descending limb of the sarcomere length-force relation in single muscle fibres of the frog. Altringham JD; Bottinelli R J Muscle Res Cell Motil; 1985 Oct; 6(5):585-600. PubMed ID: 3877739 [TBL] [Abstract][Full Text] [Related]
25. Nonuniform elasticity of titin in cardiac myocytes: a study using immunoelectron microscopy and cellular mechanics. Granzier H; Helmes M; Trombitás K Biophys J; 1996 Jan; 70(1):430-42. PubMed ID: 8770219 [TBL] [Abstract][Full Text] [Related]
26. Sarcomere length changes in single frog muscle fibres during tetani at long sarcomere lengths. Altringham JD; Pollack GH Adv Exp Med Biol; 1984; 170():473-93. PubMed ID: 6611030 [TBL] [Abstract][Full Text] [Related]
27. Effect of thin filament length on the force-sarcomere length relation of skeletal muscle. Granzier HL; Akster HA; Ter Keurs HE Am J Physiol; 1991 May; 260(5 Pt 1):C1060-70. PubMed ID: 2035614 [TBL] [Abstract][Full Text] [Related]
28. Time-resolved X-ray diffraction studies on the effect of slow length changes on tetanized frog skeletal muscle. Amemiya Y; Iwamoto H; Kobayashi T; Sugi H; Tanaka H; Wakabayashi K J Physiol; 1988 Dec; 407():231-41. PubMed ID: 3267188 [TBL] [Abstract][Full Text] [Related]
29. Redistribution of sarcomere length during isometric contraction of frog muscle fibres and its relation to tension creep. Edman KA; Reggiani C J Physiol; 1984 Jun; 351():169-98. PubMed ID: 6611407 [TBL] [Abstract][Full Text] [Related]
30. The morphological changes in the sarcomeres of frog sartorius. II. Muscles contracting against light loads. Saadeh FA; Bergman RA Anat Anz; 1984; 156(3):225-9. PubMed ID: 6465522 [TBL] [Abstract][Full Text] [Related]
31. Sarcomere length dependence of the force-velocity relation in single frog muscle fibers. Granzier HL; Burns DH; Pollack GH Biophys J; 1989 Mar; 55(3):499-507. PubMed ID: 2784695 [TBL] [Abstract][Full Text] [Related]
32. Myofibrils bear most of the resting tension in frog skeletal muscle. Magid A; Law DJ Science; 1985 Dec; 230(4731):1280-2. PubMed ID: 4071053 [TBL] [Abstract][Full Text] [Related]
33. The positional stability of thick filaments in activated skeletal muscle depends on sarcomere length: evidence for the role of titin filaments. Horowits R; Podolsky RJ J Cell Biol; 1987 Nov; 105(5):2217-23. PubMed ID: 3680378 [TBL] [Abstract][Full Text] [Related]
34. Morphological and functional characterization of the endosarcomeric elastic filament. Salviati G; Betto R; Ceoldo S; Pierobon-Bormioli S Am J Physiol; 1990 Jul; 259(1 Pt 1):C144-9. PubMed ID: 2164780 [TBL] [Abstract][Full Text] [Related]
36. Relationship between light diffraction intensity and tension development in frog skeletal muscle. Oba T; Hotta K Experientia; 1983 Jan; 39(1):58-9. PubMed ID: 6600686 [TBL] [Abstract][Full Text] [Related]
37. Effects of N-ethylmaleimide on the structure of skinned frog skeletal muscles. Yagi N J Muscle Res Cell Motil; 1992 Aug; 13(4):457-63. PubMed ID: 1401041 [TBL] [Abstract][Full Text] [Related]