BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 18043496)

  • 1. The effect of surface electrical stimulation on vocal fold position.
    Humbert IA; Poletto CJ; Saxon KG; Kearney PR; Ludlow CL
    Laryngoscope; 2008 Jan; 118(1):14-9. PubMed ID: 18043496
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Targeted transtracheal stimulation for vocal fold closure.
    Hadley AJ; Thompson P; Kolb I; Hahn EC; Tyler DJ
    Dysphagia; 2014 Jun; 29(3):346-54. PubMed ID: 24562508
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Correspondence between laryngeal vocal fold movement and muscle activity during speech and nonspeech gestures.
    Poletto CJ; Verdun LP; Strominger R; Ludlow CL
    J Appl Physiol (1985); 2004 Sep; 97(3):858-66. PubMed ID: 15133000
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of surface electrical stimulation on hyolaryngeal movement in normal individuals at rest and during swallowing.
    Humbert IA; Poletto CJ; Saxon KG; Kearney PR; Crujido L; Wright-Harp W; Payne J; Jeffries N; Sonies BC; Ludlow CL
    J Appl Physiol (1985); 2006 Dec; 101(6):1657-63. PubMed ID: 16873602
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of transcutaneous electrical stimulation on vocal folds adduction.
    Seifpanahi S; Izadi F; Jamshidi AA; Shirmohammadi N
    Eur Arch Otorhinolaryngol; 2017 Sep; 274(9):3423-3428. PubMed ID: 28555273
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional Electrical Stimulation of the Feline Larynx With a Flexible Ribbon Electrode Array.
    Bliss MR; Wark H; McDonnall D; Smith ME
    Ann Otol Rhinol Laryngol; 2016 Feb; 125(2):130-6. PubMed ID: 26346278
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Three-dimensional changes in the upper airway during neuromuscular stimulation of laryngeal muscles.
    Ludlow CL; Hang C; Bielamowicz S; Choyke P; Hampshire V; Selbie WS
    Artif Organs; 1999 May; 23(5):463-5. PubMed ID: 10378944
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Echo-planar magnetic resonance imaging of deglutitive vocal fold closure: normal and pathologic patterns of displacement.
    Gilbert RJ; Daftary S; Woo P; Seltzer S; Shapshay SM; Weisskoff RM
    Laryngoscope; 1996 May; 106(5 Pt 1):568-72. PubMed ID: 8628082
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamic magnetic resonance imaging of vocal cord closure during deglutition.
    Flaherty RF; Seltzer S; Campbell T; Weisskoff RM; Gilbert RJ
    Gastroenterology; 1995 Sep; 109(3):843-9. PubMed ID: 7657113
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transcutaneous electrical stimulation of the recurrent laryngeal nerve: a method of controlling vocal cord position.
    Sanders I; Aviv J; Biller HF
    Otolaryngol Head Neck Surg; 1986 Sep; 95(2):152-7. PubMed ID: 3108752
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effects of breath-holding on vocal fold adduction: implications for safe swallowing.
    Donzelli J; Brady S
    Arch Otolaryngol Head Neck Surg; 2004 Feb; 130(2):208-10. PubMed ID: 14967752
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional electrical stimulation of laryngeal adductor muscle restores mobility of vocal fold and improves voice sounds in cats with unilateral laryngeal paralysis.
    Katada A; Nonaka S; Adachi M; Kunibe I; Arakawa T; Imada M; Hayashi T; Zealear DL; Harabuchi Y
    Neurosci Res; 2004 Oct; 50(2):153-9. PubMed ID: 15380322
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coordination of deglutitive glottic closure with oropharyngeal swallowing.
    Shaker R; Dodds WJ; Dantas RO; Hogan WJ; Arndorfer RC
    Gastroenterology; 1990 Jun; 98(6):1478-84. PubMed ID: 2338189
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of a Closed-Loop Stimulator for Laryngeal Reanimation: Part 2. Device Testing in the Canine Model of Laryngeal Paralysis.
    Heaton JT; Kobler JB; Otten DM; Hillman RE; Zeitels SM
    Ann Otol Rhinol Laryngol; 2019 Mar; 128(3_suppl):53S-70S. PubMed ID: 30843434
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Measurement of adductory force of individual laryngeal muscles in an in vivo canine model.
    Nasri S; Sercarz JA; Azizzadeh B; Kreiman J; Berke GS
    Laryngoscope; 1994 Oct; 104(10):1213-8. PubMed ID: 7934590
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of concentric needle versus hooked-wire electrodes in the canine larynx.
    Jaffe DM; Solomon NP; Robinson RA; Hoffman HT; Luschei ES
    Otolaryngol Head Neck Surg; 1998 May; 118(5):655-62. PubMed ID: 9591865
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Different Movement of Hyolaryngeal Structures by Various Application of Electrical Stimulation in Normal Individuals.
    Kim SH; Oh BM; Han TR; Jeong HJ; Sim YJ
    Ann Rehabil Med; 2015 Aug; 39(4):535-44. PubMed ID: 26361589
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An Open-Source Computer Vision Tool for Automated Vocal Fold Tracking From Videoendoscopy.
    Adamian N; Naunheim MR; Jowett N
    Laryngoscope; 2021 Jan; 131(1):E219-E225. PubMed ID: 32356903
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deglutitive aspiration in patients with tracheostomy: effect of tracheostomy on the duration of vocal cord closure.
    Shaker R; Milbrath M; Ren J; Campbell B; Toohill R; Hogan W
    Gastroenterology; 1995 May; 108(5):1357-60. PubMed ID: 7729626
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Control of the glottal configuration in ex vivo human models: quantitative anatomy for clinical and experimental practices.
    Lagier A; Guenoun D; Legou T; Espesser R; Giovanni A; Champsaur P
    Surg Radiol Anat; 2017 Mar; 39(3):257-262. PubMed ID: 27600801
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.