These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 18043496)

  • 41. Thyroarytenoid muscle activity and infraglottic aspect of canine vocal fold vibration.
    Yumoto E; Kadota Y; Kurokawa H
    Arch Otolaryngol Head Neck Surg; 1995 Jul; 121(7):759-64. PubMed ID: 7598853
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The functional role of the pharyngeal plexus in vocal cord innervation in humans.
    Uludag M; Aygun N; Isgor A
    Eur Arch Otorhinolaryngol; 2017 Feb; 274(2):1121-1128. PubMed ID: 27812786
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The dynamics of length change in canine vocal folds.
    Titze IR; Jiang JJ; Lin E
    J Voice; 1997 Sep; 11(3):267-76. PubMed ID: 9297670
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Chronic intermittent stimulation of the thyroarytenoid muscle maintains dynamic control of glottal adduction.
    Ludlow CL; Bielamowicz S; Daniels Rosenberg M; Ambalavanar R; Rossini K; Gillespie M; Hampshire V; Testerman R; Erickson D; Carraro U
    Muscle Nerve; 2000 Jan; 23(1):44-57. PubMed ID: 10590405
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Flexible endoscopic evaluation of swallowing with sensory testing in patients with unilateral vocal fold immobility: incidence and pathophysiology of aspiration.
    Tabaee A; Murry T; Zschommler A; Desloge RB
    Laryngoscope; 2005 Apr; 115(4):565-9. PubMed ID: 15805859
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Simultaneous determination of neuromuscular blockade at the adducting and abducting laryngeal muscles using phonomyography.
    Hemmerling TM; Michaud G; Trager G; Donati F
    Anesth Analg; 2004 Jun; 98(6):1729-1733. PubMed ID: 15155336
    [TBL] [Abstract][Full Text] [Related]  

  • 47. [Clinical analysis of selective laryngeal reinnervation using upper root of phrenic nerve and hypoglossal nerve branch in the treatment of bilateral vocal fold paralysis].
    Li M; Zheng HL; Chen SC; Zhu MH; Jiang H; Liu F; Gao YN; Wang W; Zhang CY; Chen MJ
    Zhonghua Er Bi Yan Hou Tou Jing Wai Ke Za Zhi; 2020 Nov; 55(11):1016-1021. PubMed ID: 33210879
    [No Abstract]   [Full Text] [Related]  

  • 48. Arytenoid motion evoked by regional electrical stimulation of the canine posterior cricoarytenoid muscle.
    Sanders I; Rao F; Biller HF
    Laryngoscope; 1994 Apr; 104(4):456-62. PubMed ID: 8164485
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Compensatory Movement of Contralateral Vocal Folds in Patients With Unilateral Vocal Fold Paralysis.
    Xu X; Zhuang P; Wilson A; Jiang JJ
    J Voice; 2021 Mar; 35(2):328.e23-328.e28. PubMed ID: 31653598
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Exploring stimulation patterns for electrical stimulation of the larynx using surface electrodes.
    Feiner M; Gerstenberger C; Mayr W; Hortobagyi D; Gugatschka M
    Eur Arch Otorhinolaryngol; 2019 Nov; 276(11):3153-3158. PubMed ID: 31414223
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Swallowing function in pediatric patients with bilateral vocal fold immobility.
    Hsu J; Tibbetts KM; Wu D; Nassar M; Tan M
    Int J Pediatr Otorhinolaryngol; 2017 Feb; 93():37-41. PubMed ID: 28109495
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Neck surface electromyography as a measure of vocal hyperfunction before and after injection laryngoplasty.
    Stepp CE; Heaton JT; Jetté ME; Burns JA; Hillman RE
    Ann Otol Rhinol Laryngol; 2010 Sep; 119(9):594-601. PubMed ID: 21033026
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Laryngeal adductor reflex and pharyngeal squeeze as predictors of laryngeal penetration and aspiration.
    Aviv JE; Spitzer J; Cohen M; Ma G; Belafsky P; Close LG
    Laryngoscope; 2002 Feb; 112(2):338-41. PubMed ID: 11889394
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Recurrent laryngeal nerve transection in mice results in translational upper airway dysfunction.
    Haney MM; Hamad A; Woldu HG; Ciucci M; Nichols N; Bunyak F; Lever TE
    J Comp Neurol; 2020 Mar; 528(4):574-596. PubMed ID: 31512255
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Pattern of gross displacement of the vocal fold in adduction and abduction movements.
    Kotby MN; Basiouny SE; Amin M; Garrett D; Kirchner JA; Kahane JC
    Acta Otolaryngol; 1992; 112(2):349-52. PubMed ID: 1605005
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Coordination of deglutitive vocal cord closure and oral-pharyngeal swallowing events in the elderly.
    Zamir Z; Ren J; Hogan WJ; Shaker R
    Eur J Gastroenterol Hepatol; 1996 May; 8(5):425-9. PubMed ID: 8804869
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Synchronous video laryngoscopy and sonography of the larynx in children.
    Klinge K; Guntinas-Lichius O; Axtmann K; Mueller AH
    Eur Arch Otorhinolaryngol; 2016 Feb; 273(2):439-45. PubMed ID: 26446622
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Effects of surface electrical stimulation both at rest and during swallowing in chronic pharyngeal Dysphagia.
    Ludlow CL; Humbert I; Saxon K; Poletto C; Sonies B; Crujido L
    Dysphagia; 2007 Jan; 22(1):1-10. PubMed ID: 16718620
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Identification of the motor laryngeal nerves - a new electrical stimulation technique.
    Spahn JG; Bizal J; Ferguson S; Lingeman RE
    Laryngoscope; 1981 Nov; 91(11):1865-8. PubMed ID: 7300536
    [TBL] [Abstract][Full Text] [Related]  

  • 60. New horizons in dynamic rehabilitation of paralyzed laryngeal functions.
    Broniatowski M; Davies CR; Kasick JC; Jacobs GB; Tucker HM; Nosé Y
    ASAIO Trans; 1988; 34(3):674-80. PubMed ID: 3196583
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.