These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
163 related articles for article (PubMed ID: 18043645)
21. Oxidation of Molecular Hydrogen by a Chemolithoautotrophic Beggiatoa Strain. Kreutzmann AC; Schulz-Vogt HN Appl Environ Microbiol; 2016 Apr; 82(8):2527-36. PubMed ID: 26896131 [TBL] [Abstract][Full Text] [Related]
22. Rapid redox signal transmission by "Cable Bacteria" beneath a photosynthetic biofilm. Malkin SY; Meysman FJ Appl Environ Microbiol; 2015 Feb; 81(3):948-56. PubMed ID: 25416774 [TBL] [Abstract][Full Text] [Related]
23. Sulfur respiration in a marine chemolithoautotrophic beggiatoa strain. Schwedt A; Kreutzmann AC; Polerecky L; Schulz-Vogt HN Front Microbiol; 2011; 2():276. PubMed ID: 22291687 [TBL] [Abstract][Full Text] [Related]
24. Index for nitrate dosage calculation on sediment odor control using nitrate-dependent ferrous and sulfide oxidation interactions. He Z; Huang R; Liang Y; Yu G; Chong Y; Wang L J Environ Manage; 2018 Nov; 226():289-297. PubMed ID: 30121465 [TBL] [Abstract][Full Text] [Related]
25. High rates of denitrification and nitrate removal in cold seep sediments. Bowles M; Joye S ISME J; 2011 Mar; 5(3):565-7. PubMed ID: 20944683 [TBL] [Abstract][Full Text] [Related]
26. Microbial Sulfide Filter along a Benthic Redox Gradient in the Eastern Gotland Basin, Baltic Sea. Yücel M; Sommer S; Dale AW; Pfannkuche O Front Microbiol; 2017; 8():169. PubMed ID: 28232821 [TBL] [Abstract][Full Text] [Related]
27. The production of 34S-depleted sulfide during bacterial disproportionation of elemental sulfur. Canfield DE; Thamdrup B Science; 1994 Dec; 266():1973-5. PubMed ID: 11540246 [TBL] [Abstract][Full Text] [Related]
28. Bioreactor performance and functional gene analysis of microbial community in a limited-oxygen fed bioreactor for co-reduction of sulfate and nitrate with high organic input. Xu XJ; Chen C; Wang AJ; Yu H; Zhou X; Guo HL; Yuan Y; Lee DJ; Zhou J; Ren NQ J Hazard Mater; 2014 Aug; 278():250-7. PubMed ID: 24981676 [TBL] [Abstract][Full Text] [Related]
29. Nitrate-reducing, sulfide-oxidizing bacteria as microbial oxidants for rapid biological sulfide removal. De Gusseme B; De Schryver P; De Cooman M; Verbeken K; Boeckx P; Verstraete W; Boon N FEMS Microbiol Ecol; 2009 Jan; 67(1):151-61. PubMed ID: 19120464 [TBL] [Abstract][Full Text] [Related]
30. Functional diversity of bacteria in a ferruginous hydrothermal sediment. Handley KM; Boothman C; Mills RA; Pancost RD; Lloyd JR ISME J; 2010 Sep; 4(9):1193-205. PubMed ID: 20410934 [TBL] [Abstract][Full Text] [Related]
31. Biogenic U(IV) oxidation by dissolved oxygen and nitrate in sediment after prolonged U(VI)/Fe(III)/SO(4)(2-) reduction. Moon HS; Komlos J; Jaffé PR J Contam Hydrol; 2009 Feb; 105(1-2):18-27. PubMed ID: 19064300 [TBL] [Abstract][Full Text] [Related]
32. On the evolution and physiology of cable bacteria. Kjeldsen KU; Schreiber L; Thorup CA; Boesen T; Bjerg JT; Yang T; Dueholm MS; Larsen S; Risgaard-Petersen N; Nierychlo M; Schmid M; Bøggild A; van de Vossenberg J; Geelhoed JS; Meysman FJR; Wagner M; Nielsen PH; Nielsen LP; Schramm A Proc Natl Acad Sci U S A; 2019 Sep; 116(38):19116-19125. PubMed ID: 31427514 [TBL] [Abstract][Full Text] [Related]
33. Enrichment and identification of large filamentous sulfur bacteria related to Beggiatoa species from brackishwater ecosystems of Tamil Nadu along the southeast coast of India. Saravanakumar C; Dineshkumar N; Alavandi SV; Salman V; Poornima M; Kalaimani N Syst Appl Microbiol; 2012 Sep; 35(6):396-403. PubMed ID: 22841519 [TBL] [Abstract][Full Text] [Related]
34. Unravelling the sulphur cycle of marine sediments. Jørgensen BB Environ Microbiol; 2019 Oct; 21(10):3533-3538. PubMed ID: 31222871 [TBL] [Abstract][Full Text] [Related]
36. The competitive role of organic carbon and dissolved sulfide in controlling the distribution of mercury in freshwater lake sediments. Belzile N; Lang CY; Chen YW; Wang M Sci Total Environ; 2008 Nov; 405(1-3):226-38. PubMed ID: 18657305 [TBL] [Abstract][Full Text] [Related]
37. Ecophysiology and the energetic benefit of mixotrophic Fe(II) oxidation by various strains of nitrate-reducing bacteria. Muehe EM; Gerhardt S; Schink B; Kappler A FEMS Microbiol Ecol; 2009 Dec; 70(3):335-43. PubMed ID: 19732145 [TBL] [Abstract][Full Text] [Related]
38. Pathways of organic carbon oxidation in three continental margin sediments. Canfield DE; Jorgensen BB; Fossing H; Glud R; Gundersen J; Ramsing NB; Thamdrup B; Hansen JW; Nielsen LP; Hall PO Mar Geol; 1993; 113():27-40. PubMed ID: 11539842 [TBL] [Abstract][Full Text] [Related]
39. Distribution and variability of redox zones controlling spatial variability of arsenic in the Mississippi River Valley alluvial aquifer, southeastern Arkansas. Sharif MU; Davis RK; Steele KF; Kim B; Hays PD; Kresse TM; Fazio JA J Contam Hydrol; 2008 Jul; 99(1-4):49-67. PubMed ID: 18486990 [TBL] [Abstract][Full Text] [Related]
40. Anaerobic redox cycling of iron by freshwater sediment microorganisms. Weber KA; Urrutia MM; Churchill PF; Kukkadapu RK; Roden EE Environ Microbiol; 2006 Jan; 8(1):100-13. PubMed ID: 16343326 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]