These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
66 related articles for article (PubMed ID: 18043655)
1. Effect of organic forms of phosphorus and variable concentrations of sulfide on the metabolic generation of soluble-reactive phosphate by sulfur chemolithoautotrophs: a laboratory study. Guhathakurta H; Biswas R; Dey P; Mahapatra PG; Mondal B ISME J; 2007 Oct; 1(6):545-50. PubMed ID: 18043655 [TBL] [Abstract][Full Text] [Related]
2. Filamentous sulfur bacteria preserved in modern and ancient phosphatic sediments: implications for the role of oxygen and bacteria in phosphogenesis. Bailey JV; Corsetti FA; Greene SE; Crosby CH; Liu P; Orphan VJ Geobiology; 2013 Sep; 11(5):397-405. PubMed ID: 23786451 [TBL] [Abstract][Full Text] [Related]
3. Variations in stream water and sediment phosphorus among select Ozark catchments. Haggard BE; Smith DR; Brye KR J Environ Qual; 2007; 36(6):1725-34. PubMed ID: 17940273 [TBL] [Abstract][Full Text] [Related]
4. Large sulfur bacteria and the formation of phosphorite. Schulz HN; Schulz HD Science; 2005 Jan; 307(5708):416-8. PubMed ID: 15662012 [TBL] [Abstract][Full Text] [Related]
5. Interactions of land use and dynamic river conditions on sorption equilibria between benthic sediments and river soluble reactive phosphorus concentrations. Stutter MI; Lumsdon DG Water Res; 2008 Oct; 42(16):4249-60. PubMed ID: 18775552 [TBL] [Abstract][Full Text] [Related]
6. Internal loading of phosphorus in a sedimentation pond of a treatment wetland: effect of a phytoplankton crash. Palmer-Felgate EJ; Mortimer RJ; Krom MD; Jarvie HP; Williams RJ; Spraggs RE; Stratford CJ Sci Total Environ; 2011 May; 409(11):2222-32. PubMed ID: 21420723 [TBL] [Abstract][Full Text] [Related]
7. The effect of nitrate concentration on sulfide-driven autotrophic denitrification in marine sediment. Shao MF; Zhang T; Fang HH; Li X Chemosphere; 2011 Mar; 83(1):1-6. PubMed ID: 21316076 [TBL] [Abstract][Full Text] [Related]
8. [Isolation, purification, and phosphate-solubilizing capability of phosphorous bacteria in West Lake sediment]. Li W; Shi J Ying Yong Sheng Tai Xue Bao; 2006 Nov; 17(11):2112-6. PubMed ID: 17269337 [TBL] [Abstract][Full Text] [Related]
9. Sulfide induces phosphate release from polyphosphate in cultures of a marine Beggiatoa strain. Brock J; Schulz-Vogt HN ISME J; 2011 Mar; 5(3):497-506. PubMed ID: 20827290 [TBL] [Abstract][Full Text] [Related]
10. Disparate distributions of chemolithotrophs containing form IA or IC large subunit genes for ribulose-1,5-bisphosphate carboxylase/oxygenase in intertidal marine and littoral lake sediments. Nigro LM; King GM FEMS Microbiol Ecol; 2007 Apr; 60(1):113-25. PubMed ID: 17381527 [TBL] [Abstract][Full Text] [Related]
11. [Influences of submerged vegetation Hydrilla verticillata on the forms of inorganic and organic phosphorus and potentially exchangeable phosphate in sediments]. Zhou XN; Wang SR; Jin XC Huan Jing Ke Xue; 2006 Dec; 27(12):2421-5. PubMed ID: 17304834 [TBL] [Abstract][Full Text] [Related]
12. Effects of organic matter and submerged macrophytes on variations of alkaline phosphatase activity and phosphorus fractions in lake sediment. Wang S; Jiao LX; Yang S; Jin X; Yi W J Environ Manage; 2012 Dec; 113():355-60. PubMed ID: 23102643 [TBL] [Abstract][Full Text] [Related]
13. Sulfide fluxes in a microbial mat from the Ebro Delta, Spain. Mir J; MartÃnez-Alonso M; Caumette P; Guerrero R; Esteve I Int Microbiol; 2002 Sep; 5(3):133-8. PubMed ID: 12207215 [TBL] [Abstract][Full Text] [Related]
14. High-resolution simultaneous measurements of dissolved reactive phosphorus and dissolved sulfide: the first observation of their simultaneous release in sediments. Ding S; Sun Q; Xu D; Jia F; He X; Zhang C Environ Sci Technol; 2012 Aug; 46(15):8297-304. PubMed ID: 22734510 [TBL] [Abstract][Full Text] [Related]
15. Benthic bacterial response to variable estuarine water inputs. Manini E; Luna GM; Danovaro R FEMS Microbiol Ecol; 2004 Nov; 50(3):185-94. PubMed ID: 19712359 [TBL] [Abstract][Full Text] [Related]
16. Potential sulfur metabolisms and associated bacteria within anoxic surface sediment from saline meromictic Lake Kaiike (Japan). Koizumi Y; Kojima H; Fukui M FEMS Microbiol Ecol; 2005 May; 52(3):297-305. PubMed ID: 16329915 [TBL] [Abstract][Full Text] [Related]
17. Microbial impact on polysulfide dynamics in the environment. Findlay AJ FEMS Microbiol Lett; 2016 Jun; 363(11):. PubMed ID: 27190288 [TBL] [Abstract][Full Text] [Related]
18. Sulfur-metabolizing bacterial populations in microbial mats of the Nakabusa hot spring, Japan. Kubo K; Knittel K; Amann R; Fukui M; Matsuura K Syst Appl Microbiol; 2011 Jun; 34(4):293-302. PubMed ID: 21353426 [TBL] [Abstract][Full Text] [Related]
19. Sulfide formation in freshwater sediments, by sulfate-reducing microorganisms with diverse tolerance to salt. Rees GN; Baldwin DS; Watson GO; Hall KC Sci Total Environ; 2010 Dec; 409(1):134-9. PubMed ID: 20934202 [TBL] [Abstract][Full Text] [Related]
20. The competitive role of organic carbon and dissolved sulfide in controlling the distribution of mercury in freshwater lake sediments. Belzile N; Lang CY; Chen YW; Wang M Sci Total Environ; 2008 Nov; 405(1-3):226-38. PubMed ID: 18657305 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]