BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 18043671)

  • 1. The use of stable isotope probing to identify key iron-reducing microorganisms involved in anaerobic benzene degradation.
    Kunapuli U; Lueders T; Meckenstock RU
    ISME J; 2007 Nov; 1(7):643-53. PubMed ID: 18043671
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Time-resolved DNA stable isotope probing links Desulfobacterales- and Coriobacteriaceae-related bacteria to anaerobic degradation of benzene under methanogenic conditions.
    Noguchi M; Kurisu F; Kasuga I; Furumai H
    Microbes Environ; 2014; 29(2):191-9. PubMed ID: 24909708
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The use of nucleic acid based stable isotope probing to identify the microorganisms responsible for anaerobic benzene and toluene biodegradation.
    Cupples AM
    J Microbiol Methods; 2011 May; 85(2):83-91. PubMed ID: 21356251
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DNA stable-isotope probing of oil sands tailings pond enrichment cultures reveals different key players for toluene degradation under methanogenic and sulfidogenic conditions.
    Laban NA; Dao A; Foght J
    FEMS Microbiol Ecol; 2015 May; 91(5):. PubMed ID: 25873466
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Anaerobic degradation of 1-methylnaphthalene by a member of the Thermoanaerobacteraceae contained in an iron-reducing enrichment culture.
    Marozava S; Mouttaki H; Müller H; Laban NA; Probst AJ; Meckenstock RU
    Biodegradation; 2018 Feb; 29(1):23-39. PubMed ID: 29177812
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Anaerobic degradation of benzene by a marine sulfate-reducing enrichment culture, and cell hybridization of the dominant phylotype.
    Musat F; Widdel F
    Environ Microbiol; 2008 Jan; 10(1):10-9. PubMed ID: 18211263
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Anaerobic benzene degradation under denitrifying conditions: Peptococcaceae as dominant benzene degraders and evidence for a syntrophic process.
    van der Zaan BM; Saia FT; Stams AJ; Plugge CM; de Vos WM; Smidt H; Langenhoff AA; Gerritse J
    Environ Microbiol; 2012 May; 14(5):1171-81. PubMed ID: 22296107
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional characterization of an anaerobic benzene-degrading enrichment culture by DNA stable isotope probing.
    Herrmann S; Kleinsteuber S; Chatzinotas A; Kuppardt S; Lueders T; Richnow HH; Vogt C
    Environ Microbiol; 2010 Feb; 12(2):401-11. PubMed ID: 19840104
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of putative benzene-degrading bacteria in methanogenic enrichment cultures.
    Sakai N; Kurisu F; Yagi O; Nakajima F; Yamamoto K
    J Biosci Bioeng; 2009 Dec; 108(6):501-7. PubMed ID: 19914583
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of enzymes involved in anaerobic benzene degradation by a strictly anaerobic iron-reducing enrichment culture.
    Abu Laban N; Selesi D; Rattei T; Tischler P; Meckenstock RU
    Environ Microbiol; 2010 Oct; 12(10):2783-96. PubMed ID: 20545743
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of intermediates formed during anaerobic benzene degradation by an iron-reducing enrichment culture.
    Kunapuli U; Griebler C; Beller HR; Meckenstock RU
    Environ Microbiol; 2008 Jul; 10(7):1703-12. PubMed ID: 18412549
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Anaerobic Benzene Mineralization by Nitrate-Reducing and Sulfate-Reducing Microbial Consortia Enriched From the Same Site: Comparison of Community Composition and Degradation Characteristics.
    Keller AH; Kleinsteuber S; Vogt C
    Microb Ecol; 2018 May; 75(4):941-953. PubMed ID: 29124312
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dominance of Geobacteraceae in BTX-degrading enrichments from an iron-reducing aquifer.
    Botton S; van Harmelen M; Braster M; Parsons JR; Röling WF
    FEMS Microbiol Ecol; 2007 Oct; 62(1):118-30. PubMed ID: 17784862
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conductive iron oxide minerals accelerate syntrophic cooperation in methanogenic benzoate degradation.
    Zhuang L; Tang J; Wang Y; Hu M; Zhou S
    J Hazard Mater; 2015 Aug; 293():37-45. PubMed ID: 25827267
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anaerobic degradation of the aromatic hydrocarbon biphenyl by a sulfate-reducing enrichment culture.
    Selesi D; Meckenstock RU
    FEMS Microbiol Ecol; 2009 Apr; 68(1):86-93. PubMed ID: 19187215
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional analysis of an anaerobic m-xylene-degrading enrichment culture using protein-based stable isotope probing.
    Bozinovski D; Herrmann S; Richnow HH; von Bergen M; Seifert J; Vogt C
    FEMS Microbiol Ecol; 2012 Jul; 81(1):134-44. PubMed ID: 22360283
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Anaerobic degradation of benzene by enriched consortia with humic acids as terminal electron acceptors.
    Cervantes FJ; Mancilla AR; Ríos-del Toro EE; Alpuche-Solís AG; Montoya-Lorenzana L
    J Hazard Mater; 2011 Nov; 195():201-7. PubMed ID: 21880424
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Anaerobic benzene degradation by Gram-positive sulfate-reducing bacteria.
    Abu Laban N; Selesi D; Jobelius C; Meckenstock RU
    FEMS Microbiol Ecol; 2009 Jun; 68(3):300-11. PubMed ID: 19416354
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reconstructing metabolic pathways of a member of the genus Pelotomaculum suggesting its potential to oxidize benzene to carbon dioxide with direct reduction of sulfate.
    Dong X; Dröge J; von Toerne C; Marozava S; McHardy AC; Meckenstock RU
    FEMS Microbiol Ecol; 2017 Mar; 93(3):. PubMed ID: 28011598
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Anaerobic naphthalene degradation by Gram-positive, iron-reducing bacteria.
    Kleemann R; Meckenstock RU
    FEMS Microbiol Ecol; 2011 Dec; 78(3):488-96. PubMed ID: 22066721
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.