BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 18043855)

  • 1. Evolutionary analysis of the TPP-dependent enzyme family.
    Costelloe SJ; Ward JM; Dalby PA
    J Mol Evol; 2008 Jan; 66(1):36-49. PubMed ID: 18043855
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The modular structure of ThDP-dependent enzymes.
    Vogel C; Pleiss J
    Proteins; 2014 Oct; 82(10):2523-37. PubMed ID: 24888727
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Thiamine diphosphate dependent Enzyme Engineering Database: a tool for the systematic analysis of sequence and structure relations.
    Widmann M; Radloff R; Pleiss J
    BMC Biochem; 2010 Feb; 11():9. PubMed ID: 20122171
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The relationships between transketolase, yeast pyruvate decarboxylase and pyruvate dehydrogenase of the pyruvate dehydrogenase complex.
    Robinson BH; Chun K
    FEBS Lett; 1993 Aug; 328(1-2):99-102. PubMed ID: 8344439
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Insights into the Thiamine Diphosphate Enzyme Activation Mechanism: Computational Model for Transketolase Using a Quantum Mechanical/Molecular Mechanical Method.
    Nauton L; Hélaine V; Théry V; Hecquet L
    Biochemistry; 2016 Apr; 55(14):2144-52. PubMed ID: 26998737
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Conserved residues are functionally distinct within transketolases of different species.
    Singleton CK; Wang JJ; Shan L; Martin PR
    Biochemistry; 1996 Dec; 35(49):15865-9. PubMed ID: 8961951
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure and properties of an engineered transketolase from maize.
    Gerhardt S; Echt S; Busch M; Freigang J; Auerbach G; Bader G; Martin WF; Bacher A; Huber R; Fischer M
    Plant Physiol; 2003 Aug; 132(4):1941-9. PubMed ID: 12913150
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular evolutionary analysis of the thiamine-diphosphate-dependent enzyme, transketolase.
    Schenk G; Layfield R; Candy JM; Duggleby RG; Nixon PF
    J Mol Evol; 1997 May; 44(5):552-72. PubMed ID: 9115179
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DNA sequence of the yeast transketolase gene.
    Fletcher TS; Kwee IL; Nakada T; Largman C; Martin BM
    Biochemistry; 1992 Feb; 31(6):1892-6. PubMed ID: 1737042
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A common structural motif in thiamin pyrophosphate-binding enzymes.
    Hawkins CF; Borges A; Perham RN
    FEBS Lett; 1989 Sep; 255(1):77-82. PubMed ID: 2792374
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A thiamin diphosphate binding fold revealed by comparison of the crystal structures of transketolase, pyruvate oxidase and pyruvate decarboxylase.
    Muller YA; Lindqvist Y; Furey W; Schulz GE; Jordan F; Schneider G
    Structure; 1993 Oct; 1(2):95-103. PubMed ID: 8069629
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of donor substrate on kinetic parameters of thiamine diphosphate binding to transketolase.
    Ospanov RV; Kochetov GA; Kurganov BI
    Biochemistry (Mosc); 2007 Jan; 72(1):84-92. PubMed ID: 17309441
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of thiamine pyrophosphate modification on its coenzyme function in a transketolase-catalyzed reaction.
    Usmanov RA; Neef H; Pustynnikov MG; Schellenberger A; Kochetov GA
    Biochem Int; 1985 Mar; 10(3):479-86. PubMed ID: 4015669
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Crystallography and mutagenesis of transketolase: mechanistic implications for enzymatic thiamin catalysis.
    Schneider G; Lindqvist Y
    Biochim Biophys Acta; 1998 Jun; 1385(2):387-98. PubMed ID: 9655943
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-resolution structures of Lactobacillus salivarius transketolase in the presence and absence of thiamine pyrophosphate.
    Lukacik P; Lobley CM; Bumann M; Arena de Souza V; Owens RJ; O'Toole PW; Walsh MA
    Acta Crystallogr F Struct Biol Commun; 2015 Oct; 71(Pt 10):1327-34. PubMed ID: 26457526
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure and functioning mechanism of transketolase.
    Kochetov GA; Solovjeva ON
    Biochim Biophys Acta; 2014 Sep; 1844(9):1608-18. PubMed ID: 24929114
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Binding of the coenzyme and formation of the transketolase active center.
    Kochetov G; Sevostyanova IA
    IUBMB Life; 2005 Jul; 57(7):491-7. PubMed ID: 16081370
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thiamin pyrophosphate binding mechanism and the function of the aminopyrimidine part.
    Schellenberger A
    J Nutr Sci Vitaminol (Tokyo); 1992; Spec No():392-6. PubMed ID: 1297772
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural basis for flip-flop action of thiamin pyrophosphate-dependent enzymes revealed by human pyruvate dehydrogenase.
    Ciszak EM; Korotchkina LG; Dominiak PM; Sidhu S; Patel MS
    J Biol Chem; 2003 Jun; 278(23):21240-6. PubMed ID: 12651851
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thiamine utilization in the pathogenesis of alcohol-induced brain damage.
    Martin PR; Pekovich SR; McCool BA; Whetsell WO; Singleton CK
    Alcohol Alcohol Suppl; 1994; 2():273-9. PubMed ID: 8974347
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.