These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

249 related articles for article (PubMed ID: 18044080)

  • 21. Evaluation of Apligraf persistence and basement membrane restoration in donor site wounds: a pilot study.
    Hu S; Kirsner RS; Falanga V; Phillips T; Eaglstein WH
    Wound Repair Regen; 2006; 14(4):427-33. PubMed ID: 16939570
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Visible light-induced healing of diabetic or venous foot ulcers: a placebo-controlled double-blind study.
    Landau Z; Migdal M; Lipovsky A; Lubart R
    Photomed Laser Surg; 2011 Jun; 29(6):399-404. PubMed ID: 21214497
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Leg and foot ulcers. Rapid healing and reduced number of amputations with improved treatment].
    Brismar K; Beitner H; Swedenborg J
    Lakartidningen; 1993 Nov; 90(47):4216-21. PubMed ID: 8255134
    [No Abstract]   [Full Text] [Related]  

  • 24. Experience with the use of apligraf to heal complicated surgical and nonsurgical wounds in a private practice setting.
    Shealy FG; DeLoach ED
    Adv Skin Wound Care; 2006; 19(6):310-22. PubMed ID: 16885645
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Apligraf as an Alternative to Skin Grafting in the Pediatric Population.
    Eudy M; Eudy CL; Roy S
    Cureus; 2021 Jul; 13(7):e16226. PubMed ID: 34367826
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The role of graftskin (Apligraf) in difficult-to-heal venous leg ulcers.
    Bello YM; Falabella AF
    J Wound Care; 2002 May; 11(5):182-3. PubMed ID: 12055943
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Tissue engineering in wound repair.
    Falanga VJ
    Adv Skin Wound Care; 2000; 13(2 Suppl):15-9. PubMed ID: 11074998
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cost-effectiveness of Apligraf in the treatment of venous leg ulcers.
    Sibbald RG; Torrance GW; Walker V; Attard C; MacNeil P
    Ostomy Wound Manage; 2001 Aug; 47(8):36-46. PubMed ID: 11890002
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The longevity of a bilayered skin substitute after application to venous ulcers.
    Phillips TJ; Manzoor J; Rojas A; Isaacs C; Carson P; Sabolinski M; Young J; Falanga V
    Arch Dermatol; 2002 Aug; 138(8):1079-81. PubMed ID: 12164746
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Health-related quality of life in venous leg ulcer patients successfully treated with Apligraf: a pilot study.
    Mathias SD; Prebil LA; Boyko WL; Fastenau J
    Adv Skin Wound Care; 2000; 13(2):76-8. PubMed ID: 11074990
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The FDA and designing clinical trials for chronic cutaneous ulcers.
    Maderal AD; Vivas AC; Eaglstein WH; Kirsner RS
    Semin Cell Dev Biol; 2012 Dec; 23(9):993-9. PubMed ID: 23063664
    [TBL] [Abstract][Full Text] [Related]  

  • 32. New treatments in ulcer healing and wound infection.
    Edmonds M; Bates M; Doxford M; Gough A; Foster A
    Diabetes Metab Res Rev; 2000; 16 Suppl 1():S51-4. PubMed ID: 11054889
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Advanced wound care therapies for nonhealing diabetic, venous, and arterial ulcers: a systematic review.
    Greer N; Foman NA; MacDonald R; Dorrian J; Fitzgerald P; Rutks I; Wilt TJ
    Ann Intern Med; 2013 Oct; 159(8):532-42. PubMed ID: 24126647
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Economic outcomes among Medicare patients receiving bioengineered cellular technologies for treatment of diabetic foot ulcers.
    Rice JB; Desai U; Ristovska L; Cummings AK; Birnbaum HG; Skornicki M; Margolis DJ; Parsons NB
    J Med Econ; 2015; 18(8):586-95. PubMed ID: 25786331
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Transcutaneous oxygen pressure as predictive parameter for ulcer healing in endstage vascular patients treated with spinal cord stimulation.
    Claeys LG; Horsch S
    Int Angiol; 1996 Dec; 15(4):344-9. PubMed ID: 9127776
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A Cost-Effectiveness Analysis Comparing Single-use and Traditional Negative Pressure Wound Therapy to Treat Chronic Venous and Diabetic Foot Ulcers.
    Kirsner RS; Delhougne G; Searle RJ
    Wound Manag Prev; 2020 Mar; 66(3):30-36. PubMed ID: 32294054
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A Randomized Controlled Trial Comparing a Human Acellular Dermal Matrix Versus Conventional Care for the Treatment of Venous Leg Ulcers.
    Cazzell S
    Wounds; 2019 Mar; 31(3):68-74. PubMed ID: 30720443
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cultured allogeneic skin cells are effective in the treatment of chronic diabetic leg and foot ulcers.
    Harvima IT; Virnes S; Kauppinen L; Huttunen M; Kivinen P; Niskanen L; Horsmanheimo M
    Acta Derm Venereol; 1999 May; 79(3):217-20. PubMed ID: 10384921
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The Economic Impact of Living Cell Tissue Products in Treating Diabetic Foot Ulcers and Venous Leg Ulcers in Patients with Commercial Insurance: A Retrospective Matched-Cohort Study.
    Barbul A; Gelly H; Obradovic K; Landsman A
    Adv Skin Wound Care; 2023 May; 36(5):243-248. PubMed ID: 37079787
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A bioengineered living cell construct activates an acute wound healing response in venous leg ulcers.
    Stone RC; Stojadinovic O; Rosa AM; Ramirez HA; Badiavas E; Blumenberg M; Tomic-Canic M
    Sci Transl Med; 2017 Jan; 9(371):. PubMed ID: 28053158
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.