BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 18044751)

  • 1. Two-sided fluorescence resonance energy transfer for assessing molecular interactions of up to three distinct species in confocal microscopy.
    Fazekas Z; Petrás M; Fábián A; Pályi-Krekk Z; Nagy P; Damjanovich S; Vereb G; Szöllosi J
    Cytometry A; 2008 Mar; 73(3):209-19. PubMed ID: 18044751
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Associations of ErbB2, beta1-integrin and lipid rafts on Herceptin (Trastuzumab) resistant and sensitive tumor cell lines.
    Mocanu MM; Fazekas Z; Petrás M; Nagy P; Sebestyén Z; Isola J; Tímár J; Park JW; Vereb G; Szöllosi J
    Cancer Lett; 2005 Sep; 227(2):201-12. PubMed ID: 16112423
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fluorescence resonance energy transfer of GFP and YFP by spectral imaging and quantitative acceptor photobleaching.
    Dinant C; van Royen ME; Vermeulen W; Houtsmuller AB
    J Microsc; 2008 Jul; 231(Pt 1):97-104. PubMed ID: 18638193
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Novel lambda FRET spectral confocal microscopy imaging method.
    Megías D; Marrero R; Martínez Del Peso B; García MA; Bravo-Cordero JJ; García-Grande A; Santos A; Montoya MC
    Microsc Res Tech; 2009 Jan; 72(1):1-11. PubMed ID: 18785251
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fluorescence resonance energy transfer (FRET) measurement by gradual acceptor photobleaching.
    Van Munster EB; Kremers GJ; Adjobo-Hermans MJ; Gadella TW
    J Microsc; 2005 Jun; 218(Pt 3):253-62. PubMed ID: 15958019
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of intensity-based ratiometric FRET in image cytometry--approaches and a software solution.
    Roszik J; Lisboa D; Szöllosi J; Vereb G
    Cytometry A; 2009 Sep; 75(9):761-7. PubMed ID: 19591240
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Isolation of FRET-positive cells using single 408-nm laser flow cytometry.
    van Wageningen S; Pennings AH; van der Reijden BA; Boezeman JB; de Lange F; Jansen JH
    Cytometry A; 2006 Apr; 69(4):291-8. PubMed ID: 16498686
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High throughput FRET analysis of protein-protein interactions by slide-based imaging laser scanning cytometry.
    Szalóki N; Doan-Xuan QM; Szöllősi J; Tóth K; Vámosi G; Bacsó Z
    Cytometry A; 2013 Sep; 83(9):818-29. PubMed ID: 23843167
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular interactions of ErbB1 (EGFR) and integrin-β1 in astrocytoma frozen sections predict clinical outcome and correlate with Akt-mediated in vitro radioresistance.
    Petrás M; Lajtos T; Friedländer E; Klekner A; Pintye E; Feuerstein BG; Szöllosi J; Vereb G
    Neuro Oncol; 2013 Aug; 15(8):1027-40. PubMed ID: 23595626
    [TBL] [Abstract][Full Text] [Related]  

  • 10. FRAP and FRET methods to study nuclear receptors in living cells.
    van Royen ME; Dinant C; Farla P; Trapman J; Houtsmuller AB
    Methods Mol Biol; 2009; 505():69-96. PubMed ID: 19117140
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chapter 22: Quantitation of protein-protein interactions: confocal FRET microscopy.
    Periasamy A; Wallrabe H; Chen Y; Barroso M
    Methods Cell Biol; 2008; 89():569-98. PubMed ID: 19118691
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computer program for analyzing donor photobleaching FRET image series.
    Szentesi G; Vereb G; Horváth G; Bodnár A; Fábián A; Matkó J; Gáspár R; Damjanovich S; Mátyus L; Jenei A
    Cytometry A; 2005 Oct; 67(2):119-28. PubMed ID: 16163694
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prestin-prestin and prestin-GLUT5 interactions in HEK293T cells.
    Wu X; Currall B; Yamashita T; Parker LL; Hallworth R; Zuo J
    Dev Neurobiol; 2007 Mar; 67(4):483-97. PubMed ID: 17443803
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Three-chromophore FRET microscopy to analyze multiprotein interactions in living cells.
    Galperin E; Verkhusha VV; Sorkin A
    Nat Methods; 2004 Dec; 1(3):209-17. PubMed ID: 15782196
    [TBL] [Abstract][Full Text] [Related]  

  • 15. FRETcalc plugin for calculation of FRET in non-continuous intracellular compartments.
    Stepensky D
    Biochem Biophys Res Commun; 2007 Aug; 359(3):752-8. PubMed ID: 17555710
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Strength in numbers: effects of acceptor abundance on FRET efficiency.
    Fábián ÁI; Rente T; Szöllosi J; Mátyus L; Jenei A
    Chemphyschem; 2010 Dec; 11(17):3713-21. PubMed ID: 20936620
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative FRET analysis with the EGFP-mCherry fluorescent protein pair.
    Albertazzi L; Arosio D; Marchetti L; Ricci F; Beltram F
    Photochem Photobiol; 2009; 85(1):287-97. PubMed ID: 18764891
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Application of spectral imaging microscopy in cytomics and fluorescence resonance energy transfer (FRET) analysis.
    Ecker RC; de Martin R; Steiner GE; Schmid JA
    Cytometry A; 2004 Jun; 59(2):172-81. PubMed ID: 15170596
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Confocal microscopic dual-laser dual-polarization FRET (2polFRET) at the acceptor side for correlating rotations at different distances on the cell surface.
    Bene L; Gralle M; Damjanovich L
    Biochim Biophys Acta Gen Subj; 2018 Apr; 1862(4):1050-1068. PubMed ID: 29292190
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Validating pharmacological disruption of protein-protein interactions by acceptor photobleaching FRET imaging.
    Roszik J; Tóth G; Szöllősi J; Vereb G
    Methods Mol Biol; 2013; 986():165-78. PubMed ID: 23436412
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.