BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 18044863)

  • 1. Passive water-lipid peptide translocators with conformational switches: from single-molecule probe to cellular assay.
    Fernández A; Crespo A; Blau A
    J Phys Chem B; 2007 Dec; 111(50):13987-92. PubMed ID: 18044863
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bottom-up engineering of peptide cell translocators based on environmentally modulated quadrupole switches.
    Fernández A; Crespo A; Maddipati S; Scott R
    ACS Nano; 2008 Jan; 2(1):61-8. PubMed ID: 19206548
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Contribution of the hydrophobicity gradient of an amphipathic peptide to its mode of association with lipids.
    Pérez-Méndez O; Vanloo B; Decout A; Goethals M; Peelman F; Vandekerckhove J; Brasseur R; Rosseneu M
    Eur J Biochem; 1998 Sep; 256(3):570-9. PubMed ID: 9780233
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Peptide translocators with engineered dehydration-prone hydrogen bonds.
    Maddipati S; Fernández A
    J Chem Phys; 2007 Feb; 126(6):061102. PubMed ID: 17313206
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Directed peptide assembly at the lipid-water interface cooperatively enhances membrane binding and activity.
    Ma M; Bong D
    Langmuir; 2011 Feb; 27(4):1480-6. PubMed ID: 21194228
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Correlation of three-dimensional structures with the antibacterial activity of a group of peptides designed based on a nontoxic bacterial membrane anchor.
    Wang G; Li Y; Li X
    J Biol Chem; 2005 Feb; 280(7):5803-11. PubMed ID: 15572363
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of structure-lipid bilayer permeability relationships for peptide-like small organic molecules.
    Cao Y; Xiang TX; Anderson BD
    Mol Pharm; 2008; 5(3):371-88. PubMed ID: 18355031
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modulation of the binding of signal peptides to lipid bilayers by dipoles near the hydrocarbon-water interface.
    Voglino L; McIntosh TJ; Simon SA
    Biochemistry; 1998 Sep; 37(35):12241-52. PubMed ID: 9724538
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design and synthesis of glycosylated beta3-peptides capable of folding into the 3(14)-helical conformation in water.
    Norgren AS; Arvidsson PI
    J Org Chem; 2008 Jul; 73(14):5272-8. PubMed ID: 18576687
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A hydro/organo/hybrid gelator: a peptide lipid with turning aspartame head groups.
    Mukai M; Minamikawa H; Aoyagi M; Asakawa M; Shimizu T; Kogiso M
    J Colloid Interface Sci; 2013 Apr; 395():154-60. PubMed ID: 23394806
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Controlling release from the lipidic cubic phase. Amino acids, peptides, proteins and nucleic acids.
    Clogston J; Caffrey M
    J Control Release; 2005 Sep; 107(1):97-111. PubMed ID: 15990192
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exploration of peptide motifs for potent non-viral gene delivery highly selective for dividing cells.
    Parker AL; Collins L; Zhang X; Fabre JW
    J Gene Med; 2005 Dec; 7(12):1545-54. PubMed ID: 16037993
    [TBL] [Abstract][Full Text] [Related]  

  • 13. N-terminal diproline and charge group effects on the stabilization of helical conformation in alanine-based short peptides: CD studies with water and methanol as solvent.
    Goyal B; Srivastava KR; Durani S
    J Pept Sci; 2017 Jun; 23(6):431-437. PubMed ID: 28425159
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Insight into the mechanism of internalization of the cell-penetrating carrier peptide Pep-1 through conformational analysis.
    Deshayes S; Heitz A; Morris MC; Charnet P; Divita G; Heitz F
    Biochemistry; 2004 Feb; 43(6):1449-57. PubMed ID: 14769021
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cell-Penetrating Peptides: Correlation between Peptide-Lipid Interaction and Penetration Efficiency.
    Her Choong F; Keat Yap B
    Chemphyschem; 2021 Mar; 22(5):493-498. PubMed ID: 33377300
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lipid-like behavior of signal sequence peptides at air-water interface.
    Ambroggio EE; Fidelio GD
    Biochim Biophys Acta; 2013 Feb; 1828(2):708-14. PubMed ID: 23159808
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Diphytanoyl lipids as model systems for studying membrane-active peptides.
    Kara S; Afonin S; Babii O; Tkachenko AN; Komarov IV; Ulrich AS
    Biochim Biophys Acta Biomembr; 2017 Oct; 1859(10):1828-1837. PubMed ID: 28587828
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interaction of fusogenic peptides with an antisense oligonucleotide in solution and in the presence of micelles: conformational studies.
    Laczkó I; Bottka S; Tóth GK; Malvy C; Bertrand JR; Hollósi M
    Biochem Biophys Res Commun; 2004 Jan; 313(2):356-61. PubMed ID: 14684168
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Solvation driven conformational transitions in the second transmembrane domain of mycobacteriophage holin.
    Lella M; Mahalakshmi R
    Biopolymers; 2017 Jan; 108(1):. PubMed ID: 27287926
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanism of membrane activity of the antibiotic trichogin GA IV: a two-state transition controlled by peptide concentration.
    Mazzuca C; Stella L; Venanzi M; Formaggio F; Toniolo C; Pispisa B
    Biophys J; 2005 May; 88(5):3411-21. PubMed ID: 15722429
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.