BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

528 related articles for article (PubMed ID: 18044868)

  • 1. Electronic excitations of green fluorescent proteins: modeling solvatochromatic shifts of red fluorescent protein chromophore model compound in aqueous solutions.
    Yan W; Zhang L; Xie D; Zeng J
    J Phys Chem B; 2007 Dec; 111(50):14055-63. PubMed ID: 18044868
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electronic excitations of green fluorescent proteins: protonation states of chromophore model compound in solutions.
    Xie D; Zeng J
    J Comput Chem; 2005 Nov; 26(14):1487-96. PubMed ID: 16092146
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Radiationless decay of red fluorescent protein chromophore models via twisted intramolecular charge-transfer states.
    Olsen S; Smith SC
    J Am Chem Soc; 2007 Feb; 129(7):2054-65. PubMed ID: 17253685
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantum chemistry behind bioimaging: insights from ab initio studies of fluorescent proteins and their chromophores.
    Bravaya KB; Grigorenko BL; Nemukhin AV; Krylov AI
    Acc Chem Res; 2012 Feb; 45(2):265-75. PubMed ID: 21882809
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crystallographic structures of Discosoma red fluorescent protein with immature and mature chromophores: linking peptide bond trans-cis isomerization and acylimine formation in chromophore maturation.
    Tubbs JL; Tainer JA; Getzoff ED
    Biochemistry; 2005 Jul; 44(29):9833-40. PubMed ID: 16026155
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The 559-to-600 nm shift observed in red fluorescent protein eqFP611 is attributed to cis-trans isomerization of the chromophore in an anionic protein pocket.
    Yan W; Xie D; Zeng J
    Phys Chem Chem Phys; 2009 Aug; 11(29):6042-50. PubMed ID: 19606312
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular modeling of green fluorescent protein: structural effects of chromophore deprotonation.
    Patnaik SS; Trohalaki S; Pachter R
    Biopolymers; 2004 Dec; 75(6):441-52. PubMed ID: 15497152
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cis-trans photoisomerization of fluorescent-protein chromophores.
    Voliani V; Bizzarri R; Nifosì R; Abbruzzetti S; Grandi E; Viappiani C; Beltram F
    J Phys Chem B; 2008 Aug; 112(34):10714-22. PubMed ID: 18671358
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Trans-cis isomerization is responsible for the red-shifted fluorescence in variants of the red fluorescent protein eqFP611.
    Nienhaus K; Nar H; Heilker R; Wiedenmann J; Nienhaus GU
    J Am Chem Soc; 2008 Sep; 130(38):12578-9. PubMed ID: 18761441
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of the protein matrix in green fluorescent protein fluorescence.
    Maddalo SL; Zimmer M
    Photochem Photobiol; 2006; 82(2):367-72. PubMed ID: 16613487
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electronic excitations of the green fluorescent protein chromophore in its protonation states: SAC/SAC-CI study.
    Das AK; Hasegawa JY; Miyahara T; Ehara M; Nakatsuji H
    J Comput Chem; 2003 Sep; 24(12):1421-31. PubMed ID: 12868107
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Unusual emitting states of the kindling fluorescent protein: appearance of the cationic chromophore in the GFP family.
    Grigorenko BL; Polyakov IV; Savitsky AP; Nemukhin AV
    J Phys Chem B; 2013 Jun; 117(24):7228-34. PubMed ID: 23697758
    [TBL] [Abstract][Full Text] [Related]  

  • 13. QM/MM studies of structural and energetic properties of the far-red fluorescent protein HcRed.
    Sun Q; Doerr M; Li Z; Smith SC; Thiel W
    Phys Chem Chem Phys; 2010 Mar; 12(10):2450-8. PubMed ID: 20449359
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational prediction of absorbance maxima for a structurally diverse series of engineered green fluorescent protein chromophores.
    Timerghazin QK; Carlson HJ; Liang C; Campbell RE; Brown A
    J Phys Chem B; 2008 Feb; 112(8):2533-41. PubMed ID: 18247600
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural basis of enhanced photoconversion yield in green fluorescent protein-like protein Dendra2.
    Adam V; Nienhaus K; Bourgeois D; Nienhaus GU
    Biochemistry; 2009 Jun; 48(22):4905-15. PubMed ID: 19371086
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure and mechanism of the photoactivatable green fluorescent protein.
    Henderson JN; Gepshtein R; Heenan JR; Kallio K; Huppert D; Remington SJ
    J Am Chem Soc; 2009 Apr; 131(12):4176-7. PubMed ID: 19278226
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The 2.1A crystal structure of the far-red fluorescent protein HcRed: inherent conformational flexibility of the chromophore.
    Wilmann PG; Petersen J; Pettikiriarachchi A; Buckle AM; Smith SC; Olsen S; Perugini MA; Devenish RJ; Prescott M; Rossjohn J
    J Mol Biol; 2005 May; 349(1):223-37. PubMed ID: 15876379
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chromophore aspartate oxidation-decarboxylation in the green-to-red conversion of a fluorescent protein from Zoanthus sp. 2.
    Pakhomov AA; Martynov VI
    Biochemistry; 2007 Oct; 46(41):11528-35. PubMed ID: 17892303
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bond selection in the photoisomerization reaction of anionic green fluorescent protein and kindling fluorescent protein chromophore models.
    Olsen S; Smith SC
    J Am Chem Soc; 2008 Jul; 130(27):8677-89. PubMed ID: 18597428
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cyan fluorescent protein: molecular dynamics, simulations, and electronic absorption spectrum.
    Demachy I; Ridard J; Laguitton-Pasquier H; Durnerin E; Vallverdu G; Archirel P; Lévy B
    J Phys Chem B; 2005 Dec; 109(50):24121-33. PubMed ID: 16375404
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.