BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

262 related articles for article (PubMed ID: 18044970)

  • 1. Heme synthase (ferrochelatase) catalyzes the removal of iron from heme and demetalation of metalloporphyrins.
    Taketani S; Ishigaki M; Mizutani A; Uebayashi M; Numata M; Ohgari Y; Kitajima S
    Biochemistry; 2007 Dec; 46(51):15054-61. PubMed ID: 18044970
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ferrochelatase catalyzes the formation of Zn-protoporphyrin of dry-cured ham via the conversion reaction from heme in meat.
    Chau TT; Ishigaki M; Kataoka T; Taketani S
    J Agric Food Chem; 2011 Nov; 59(22):12238-45. PubMed ID: 22004247
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Porcine ferrochelatase: the relationship between iron-removal reaction and the conversion of heme to Zn-protoporphyrin.
    Chau TT; Ishigaki M; Kataoka T; Taketani S
    Biosci Biotechnol Biochem; 2010; 74(7):1415-20. PubMed ID: 20622448
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dual mitochondrial localization and different roles of the reversible reaction of mammalian ferrochelatase.
    Sakaino M; Ishigaki M; Ohgari Y; Kitajima S; Masaki R; Yamamoto A; Taketani S
    FEBS J; 2009 Oct; 276(19):5559-70. PubMed ID: 19691493
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Color formation in nitrite-free dried hams as related to Zn-protoporphyrin IX and Zn-chelatase activity.
    Parolari G; Benedini R; Toscani T
    J Food Sci; 2009 Aug; 74(6):C413-8. PubMed ID: 19723176
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enzymatic formation of zinc-protoporphyrin by rat liver and its potential effect on hepatic heme metabolism.
    Bloomer JR; Reuter RJ; Morton KO; Wehner JM
    Gastroenterology; 1983 Sep; 85(3):663-8. PubMed ID: 6873612
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Zinc-protoporphyrin formation in nitrite-free Parma Ham and its relationship with intrinsic parameters and red color profile of processed hams.
    Schivazappa C; Simoncini N; Pinna A; Faccioli A; Zambonelli P; Virgili R
    Meat Sci; 2024 Jul; 213():109477. PubMed ID: 38492321
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ferrochelatase, glutathione peroxidase and transferrin receptor mRNA synthesis and levels in mouse erythroleukemia cells.
    Fuchs O
    Stem Cells; 1993 May; 11 Suppl 1():13-23. PubMed ID: 8318915
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chemistry and biology of heme. Effect of metal salts, organometals, and metalloporphyrins on heme synthesis and catabolism, with special reference to clinical implications and interactions with cytochrome P-450.
    Beri R; Chandra R
    Drug Metab Rev; 1993; 25(1-2):49-152. PubMed ID: 8449148
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ferrochelatase binds the iron-responsive element present in the erythroid 5-aminolevulinate synthase mRNA.
    Ferreira GC
    Biochem Biophys Res Commun; 1995 Sep; 214(3):875-8. PubMed ID: 7575558
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Measurement of ferrochelatase activity.
    Taketani S
    Curr Protoc Toxicol; 2001 May; Chapter 8():Unit 8.7. PubMed ID: 23045064
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Post-transcriptional regulation of the expression of ferrochelatase by its variant mRNA.
    Sakaino M; Kataoka T; Taketani S
    J Biochem; 2009 Jun; 145(6):733-8. PubMed ID: 19251765
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Formation of zinc protoporphyrin in cultured hepatocytes: effects of ferrochelatase inhibition, iron chelation or lead.
    Jacobs JM; Sinclair PR; Sinclair JF; Gorman N; Walton HS; Wood SG; Nichols C
    Toxicology; 1998 Feb; 125(2-3):95-105. PubMed ID: 9570325
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mitochondrial localization of functional ferrochelatase from Plasmodium falciparum.
    Nagaraj VA; Prasad D; Rangarajan PN; Padmanaban G
    Mol Biochem Parasitol; 2009 Nov; 168(1):109-12. PubMed ID: 19523497
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Product release rather than chelation determines metal specificity for ferrochelatase.
    Medlock AE; Carter M; Dailey TA; Dailey HA; Lanzilotta WN
    J Mol Biol; 2009 Oct; 393(2):308-19. PubMed ID: 19703464
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metal ion substrate inhibition of ferrochelatase.
    Hunter GA; Sampson MP; Ferreira GC
    J Biol Chem; 2008 Aug; 283(35):23685-91. PubMed ID: 18593702
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metal ion selectivity and substrate inhibition in the metal ion chelation catalyzed by human ferrochelatase.
    Davidson RE; Chesters CJ; Reid JD
    J Biol Chem; 2009 Dec; 284(49):33795-9. PubMed ID: 19767646
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Suicidal destruction of cytochrome P-450 and reduction of ferrochelatase activity by 3,5-diethoxycarbonyl-1,4-dihydro-2,4,6-trimethylpyridine and its analogues in chick embryo liver cells.
    Marks GS; Allen DT; Johnston CT; Sutherland EP; Nakatsu K; Whitney RA
    Mol Pharmacol; 1985 Apr; 27(4):459-65. PubMed ID: 3982391
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Limited proteolysis of myoglobin opens channel in ferrochelatase-globin complex for iron to zinc transmetallation.
    Paganelli MO; Grossi AB; Dores-Silva PR; Borges JC; Cardoso DR; Skibsted LH
    Food Chem; 2016 Nov; 210():491-9. PubMed ID: 27211675
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of ferrochelatase in kidney and erythroleukemia cells.
    Nakahashi Y; Taketani S; Sameshima Y; Tokunaga R
    Biochim Biophys Acta; 1990 Mar; 1037(3):321-7. PubMed ID: 2310748
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.