BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

516 related articles for article (PubMed ID: 18044989)

  • 1. Light activates output from evening neurons and inhibits output from morning neurons in the Drosophila circadian clock.
    Picot M; Cusumano P; Klarsfeld A; Ueda R; Rouyer F
    PLoS Biol; 2007 Nov; 5(11):e315. PubMed ID: 18044989
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Morning and evening peaks of activity rely on different clock neurons of the Drosophila brain.
    Grima B; Chélot E; Xia R; Rouyer F
    Nature; 2004 Oct; 431(7010):869-73. PubMed ID: 15483616
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Period gene expression in four neurons is sufficient for rhythmic activity of Drosophila melanogaster under dim light conditions.
    Rieger D; Wülbeck C; Rouyer F; Helfrich-Förster C
    J Biol Rhythms; 2009 Aug; 24(4):271-82. PubMed ID: 19625729
    [TBL] [Abstract][Full Text] [Related]  

  • 4. PDF-modulated visual inputs and cryptochrome define diurnal behavior in Drosophila.
    Cusumano P; Klarsfeld A; Chélot E; Picot M; Richier B; Rouyer F
    Nat Neurosci; 2009 Nov; 12(11):1431-7. PubMed ID: 19820704
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novel features of cryptochrome-mediated photoreception in the brain circadian clock of Drosophila.
    Klarsfeld A; Malpel S; Michard-Vanhée C; Picot M; Chélot E; Rouyer F
    J Neurosci; 2004 Feb; 24(6):1468-77. PubMed ID: 14960620
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrical silencing of PDF neurons advances the phase of non-PDF clock neurons in Drosophila.
    Wu Y; Cao G; Nitabach MN
    J Biol Rhythms; 2008 Apr; 23(2):117-28. PubMed ID: 18375861
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The neuropeptide PDF acts directly on evening pacemaker neurons to regulate multiple features of circadian behavior.
    Lear BC; Zhang L; Allada R
    PLoS Biol; 2009 Jul; 7(7):e1000154. PubMed ID: 19621061
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Drosophila Receptor Protein Tyrosine Phosphatase LAR Is Required for Development of Circadian Pacemaker Neuron Processes That Support Rhythmic Activity in Constant Darkness But Not during Light/Dark Cycles.
    Agrawal P; Hardin PE
    J Neurosci; 2016 Mar; 36(13):3860-70. PubMed ID: 27030770
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Circadian photoreception in Drosophila: functions of cryptochrome in peripheral and central clocks.
    Ivanchenko M; Stanewsky R; Giebultowicz JM
    J Biol Rhythms; 2001 Jun; 16(3):205-15. PubMed ID: 11407780
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Light and temperature control the contribution of specific DN1 neurons to Drosophila circadian behavior.
    Zhang Y; Liu Y; Bilodeau-Wentworth D; Hardin PE; Emery P
    Curr Biol; 2010 Apr; 20(7):600-5. PubMed ID: 20362449
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Disruption of synaptic transmission or clock-gene-product oscillations in circadian pacemaker cells of Drosophila cause abnormal behavioral rhythms.
    Kaneko M; Park JH; Cheng Y; Hardin PE; Hall JC
    J Neurobiol; 2000 Jun; 43(3):207-33. PubMed ID: 10842235
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional analysis of circadian pacemaker neurons in Drosophila melanogaster.
    Rieger D; Shafer OT; Tomioka K; Helfrich-Förster C
    J Neurosci; 2006 Mar; 26(9):2531-43. PubMed ID: 16510731
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The CRYPTOCHROME photoreceptor gates PDF neuropeptide signaling to set circadian network hierarchy in Drosophila.
    Zhang L; Lear BC; Seluzicki A; Allada R
    Curr Biol; 2009 Dec; 19(23):2050-5. PubMed ID: 19913424
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Defining the role of Drosophila lateral neurons in the control of circadian rhythms in motor activity and eclosion by targeted genetic ablation and PERIOD protein overexpression.
    Blanchardon E; Grima B; Klarsfeld A; Chélot E; Hardin PE; Préat T; Rouyer F
    Eur J Neurosci; 2001 Mar; 13(5):871-88. PubMed ID: 11264660
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A self-sustaining, light-entrainable circadian oscillator in the Drosophila brain.
    Veleri S; Brandes C; Helfrich-Förster C; Hall JC; Stanewsky R
    Curr Biol; 2003 Oct; 13(20):1758-67. PubMed ID: 14561400
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Drosophila free-running rhythms require intercellular communication.
    Peng Y; Stoleru D; Levine JD; Hall JC; Rosbash M
    PLoS Biol; 2003 Oct; 1(1):E13. PubMed ID: 12975658
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A role for blind DN2 clock neurons in temperature entrainment of the Drosophila larval brain.
    Picot M; Klarsfeld A; Chélot E; Malpel S; Rouyer F
    J Neurosci; 2009 Jul; 29(26):8312-20. PubMed ID: 19571122
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Circadian Structural Plasticity Drives Remodeling of E Cell Output.
    Duhart JM; Herrero A; de la Cruz G; Ispizua JI; Pírez N; Ceriani MF
    Curr Biol; 2020 Dec; 30(24):5040-5048.e5. PubMed ID: 33065014
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phase coupling of a circadian neuropeptide with rest/activity rhythms detected using a membrane-tethered spider toxin.
    Wu Y; Cao G; Pavlicek B; Luo X; Nitabach MN
    PLoS Biol; 2008 Nov; 6(11):e273. PubMed ID: 18986214
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A resetting signal between Drosophila pacemakers synchronizes morning and evening activity.
    Stoleru D; Peng Y; Nawathean P; Rosbash M
    Nature; 2005 Nov; 438(7065):238-42. PubMed ID: 16281038
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.