These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Emergence of network structure due to spike-timing-dependent plasticity in recurrent neuronal networks. II. Input selectivity--symmetry breaking. Gilson M; Burkitt AN; Grayden DB; Thomas DA; van Hemmen JL Biol Cybern; 2009 Aug; 101(2):103-14. PubMed ID: 19536559 [TBL] [Abstract][Full Text] [Related]
4. Supervised learning in spiking neural networks with ReSuMe: sequence learning, classification, and spike shifting. Ponulak F; Kasiński A Neural Comput; 2010 Feb; 22(2):467-510. PubMed ID: 19842989 [TBL] [Abstract][Full Text] [Related]
5. Learning in realistic networks of spiking neurons and spike-driven plastic synapses. Mongillo G; Curti E; Romani S; Amit DJ Eur J Neurosci; 2005 Jun; 21(11):3143-60. PubMed ID: 15978023 [TBL] [Abstract][Full Text] [Related]
6. Spatial and temporal pattern analysis via spiking neurons. Natschläger T; Ruf B Network; 1998 Aug; 9(3):319-32. PubMed ID: 9861993 [TBL] [Abstract][Full Text] [Related]
7. What can a neuron learn with spike-timing-dependent plasticity? Legenstein R; Naeger C; Maass W Neural Comput; 2005 Nov; 17(11):2337-82. PubMed ID: 16156932 [TBL] [Abstract][Full Text] [Related]
8. A very simple spiking neuron model that allows for modeling of large, complex systems. Lovelace JJ; Cios KJ Neural Comput; 2008 Jan; 20(1):65-90. PubMed ID: 18045001 [TBL] [Abstract][Full Text] [Related]
9. Learning beyond finite memory in recurrent networks of spiking neurons. Tino P; Mills AJ Neural Comput; 2006 Mar; 18(3):591-613. PubMed ID: 16483409 [TBL] [Abstract][Full Text] [Related]
10. Spontaneous dynamics of asymmetric random recurrent spiking neural networks. Soula H; Beslon G; Mazet O Neural Comput; 2006 Jan; 18(1):60-79. PubMed ID: 16354381 [TBL] [Abstract][Full Text] [Related]
11. Event-driven simulation scheme for spiking neural networks using lookup tables to characterize neuronal dynamics. Ros E; Carrillo R; Ortigosa EM; Barbour B; Agís R Neural Comput; 2006 Dec; 18(12):2959-93. PubMed ID: 17052155 [TBL] [Abstract][Full Text] [Related]
12. Learning real-world stimuli in a neural network with spike-driven synaptic dynamics. Brader JM; Senn W; Fusi S Neural Comput; 2007 Nov; 19(11):2881-912. PubMed ID: 17883345 [TBL] [Abstract][Full Text] [Related]
13. Oscillations and spiking pairs: behavior of a neuronal model with STDP learning. Shen X; Lin X; De Wilde P Neural Comput; 2008 Aug; 20(8):2037-69. PubMed ID: 18336082 [TBL] [Abstract][Full Text] [Related]
14. Spike-timing-dependent plasticity leads to gamma band responses in a neural network. Fründ I; Ohl FW; Herrmann CS Biol Cybern; 2009 Sep; 101(3):227-40. PubMed ID: 19789891 [TBL] [Abstract][Full Text] [Related]
16. On the maximization of information flow between spiking neurons. Parra LC; Beck JM; Bell AJ Neural Comput; 2009 Nov; 21(11):2991-3009. PubMed ID: 19635018 [TBL] [Abstract][Full Text] [Related]
17. STDP provides the substrate for igniting synfire chains by spatiotemporal input patterns. Hosaka R; Araki O; Ikeguchi T Neural Comput; 2008 Feb; 20(2):415-35. PubMed ID: 18045011 [TBL] [Abstract][Full Text] [Related]
18. Cooperation of spike timing-dependent and heterosynaptic plasticities in neural networks: a Fokker-Planck approach. Zhu L; Lai YC; Hoppensteadt FC; He J Chaos; 2006 Jun; 16(2):023105. PubMed ID: 16822008 [TBL] [Abstract][Full Text] [Related]
19. Learning rule of homeostatic synaptic scaling: presynaptic dependent or not. Liu JK Neural Comput; 2011 Dec; 23(12):3145-61. PubMed ID: 21919784 [TBL] [Abstract][Full Text] [Related]
20. Neurons tune to the earliest spikes through STDP. Guyonneau R; VanRullen R; Thorpe SJ Neural Comput; 2005 Apr; 17(4):859-79. PubMed ID: 15829092 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]