These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 18045083)

  • 1. Chemogenomic data analysis: prediction of small-molecule targets and the advent of biological fingerprint.
    Bender A; Young DW; Jenkins JL; Serrano M; Mikhailov D; Clemons PA; Davies JW
    Comb Chem High Throughput Screen; 2007 Sep; 10(8):719-31. PubMed ID: 18045083
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computational chemogenomics approaches to systematic knowledge-based drug discovery.
    Mestres J
    Curr Opin Drug Discov Devel; 2004 May; 7(3):304-13. PubMed ID: 15216933
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chemogenomics approaches for receptor deorphanization and extensions of the chemogenomics concept to phenotypic space.
    van der Horst E; Peironcely JE; van Westen GJ; van den Hoven OO; Galloway WR; Spring DR; Wegner JK; van Vlijmen HW; Ijzerman AP; Overington JP; Bender A
    Curr Top Med Chem; 2011; 11(15):1964-77. PubMed ID: 21470175
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Learning from the data: mining of large high-throughput screening databases.
    Yan SF; King FJ; He Y; Caldwell JS; Zhou Y
    J Chem Inf Model; 2006; 46(6):2381-95. PubMed ID: 17125181
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chemogenomics: a discipline at the crossroad of high throughput technologies, biomarker research, combinatorial chemistry, genomics, cheminformatics, bioinformatics and artificial intelligence.
    Maréchal E
    Comb Chem High Throughput Screen; 2008 Sep; 11(8):583-6. PubMed ID: 18795877
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chemogenomics approaches to novel target discovery.
    Gaither LA
    Expert Rev Proteomics; 2007 Jun; 4(3):411-9. PubMed ID: 17552925
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Active learning for computational chemogenomics.
    Reker D; Schneider P; Schneider G; Brown JB
    Future Med Chem; 2017 Mar; 9(4):381-402. PubMed ID: 28263088
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fragment analysis in small molecule discovery.
    Merlot C; Domine D; Church DJ
    Curr Opin Drug Discov Devel; 2002 May; 5(3):391-9. PubMed ID: 12058614
    [TBL] [Abstract][Full Text] [Related]  

  • 9. From in silico target prediction to multi-target drug design: current databases, methods and applications.
    Koutsoukas A; Simms B; Kirchmair J; Bond PJ; Whitmore AV; Zimmer S; Young MP; Jenkins JL; Glick M; Glen RC; Bender A
    J Proteomics; 2011 Nov; 74(12):2554-74. PubMed ID: 21621023
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chemogenomics in drug discovery: computational methods based on the comparison of binding sites.
    Vulpetti A; Kalliokoski T; Milletti F
    Future Med Chem; 2012 Oct; 4(15):1971-9. PubMed ID: 23088277
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prediction of biological targets for compounds using multiple-category Bayesian models trained on chemogenomics databases.
    Nidhi ; Glick M; Davies JW; Jenkins JL
    J Chem Inf Model; 2006; 46(3):1124-33. PubMed ID: 16711732
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Proteochemometric modelling coupled to in silico target prediction: an integrated approach for the simultaneous prediction of polypharmacology and binding affinity/potency of small molecules.
    Paricharak S; Cortés-Ciriano I; IJzerman AP; Malliavin TE; Bender A
    J Cheminform; 2015; 7():15. PubMed ID: 25926892
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of ultra-fast 2D and 3D ligand and target descriptors for side effect prediction and network analysis in polypharmacology.
    Cortés-Cabrera A; Morris GM; Finn PW; Morreale A; Gago F
    Br J Pharmacol; 2013 Oct; 170(3):557-67. PubMed ID: 23826885
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chemogenomic approaches to rational drug design.
    Rognan D
    Br J Pharmacol; 2007 Sep; 152(1):38-52. PubMed ID: 17533416
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Benchmarking a Wide Range of Chemical Descriptors for Drug-Target Interaction Prediction Using a Chemogenomic Approach.
    Sawada R; Kotera M; Yamanishi Y
    Mol Inform; 2014 Dec; 33(11-12):719-31. PubMed ID: 27485418
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Extensions to In Silico Bioactivity Predictions Using Pathway Annotations and Differential Pharmacology Analysis: Application to Xenopus laevis Phenotypic Readouts.
    Liggi S; Drakakis G; Hendry AE; Hanson KM; Brewerton SC; Wheeler GN; Bodkin MJ; Evans DA; Bender A
    Mol Inform; 2013 Dec; 32(11-12):1009-24. PubMed ID: 27481146
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Development of antituberculous drugs: current status and future prospects].
    Tomioka H; Namba K
    Kekkaku; 2006 Dec; 81(12):753-74. PubMed ID: 17240921
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinomics-structural biology and chemogenomics of kinase inhibitors and targets.
    Vieth M; Higgs RE; Robertson DH; Shapiro M; Gragg EA; Hemmerle H
    Biochim Biophys Acta; 2004 Mar; 1697(1-2):243-57. PubMed ID: 15023365
    [TBL] [Abstract][Full Text] [Related]  

  • 19. How diverse are diversity assessment methods? A comparative analysis and benchmarking of molecular descriptor space.
    Koutsoukas A; Paricharak S; Galloway WR; Spring DR; Ijzerman AP; Glen RC; Marcus D; Bender A
    J Chem Inf Model; 2014 Jan; 54(1):230-42. PubMed ID: 24289493
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 12.