These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 18045213)

  • 1. Regression methods for developing QSAR and QSPR models to predict compounds of specific pharmacodynamic, pharmacokinetic and toxicological properties.
    Yap CW; Li H; Ji ZL; Chen YZ
    Mini Rev Med Chem; 2007 Nov; 7(11):1097-107. PubMed ID: 18045213
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of compounds with specific pharmacodynamic, pharmacokinetic or toxicological property by statistical learning methods.
    Yap CW; Xue Y; Li H; Li ZR; Ung CY; Han LY; Zheng CJ; Cao ZW; Chen YZ
    Mini Rev Med Chem; 2006 Apr; 6(4):449-59. PubMed ID: 16613581
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Current mathematical methods used in QSAR/QSPR studies.
    Liu P; Long W
    Int J Mol Sci; 2009 Apr; 10(5):1978-1998. PubMed ID: 19564933
    [TBL] [Abstract][Full Text] [Related]  

  • 4. How not to develop a quantitative structure-activity or structure-property relationship (QSAR/QSPR).
    Dearden JC; Cronin MT; Kaiser KL
    SAR QSAR Environ Res; 2009; 20(3-4):241-66. PubMed ID: 19544191
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Machine learning approaches for predicting compounds that interact with therapeutic and ADMET related proteins.
    Li H; Yap CW; Ung CY; Xue Y; Li ZR; Han LY; Lin HH; Chen YZ
    J Pharm Sci; 2007 Nov; 96(11):2838-60. PubMed ID: 17786989
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of a Web-Enabled SVR-Based Machine Learning Platform and its Application on Modeling Transgene Expression Activity of Aminoglycoside-Derived Polycations.
    Zhen Z; Potta T; Lanzillo NA; Rege K; Breneman CM
    Comb Chem High Throughput Screen; 2017; 20(1):41-55. PubMed ID: 28031013
    [TBL] [Abstract][Full Text] [Related]  

  • 7. AutoWeka: toward an automated data mining software for QSAR and QSPR studies.
    Nantasenamat C; Worachartcheewan A; Jamsak S; Preeyanon L; Shoombuatong W; Simeon S; Mandi P; Isarankura-Na-Ayudhya C; Prachayasittikul V
    Methods Mol Biol; 2015; 1260():119-47. PubMed ID: 25502379
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Research on QSPR for n-octanol-water partition coefficients of organic compounds based on genetic algorithms-support vector machine and genetic algorithms-radial basis function neural networks].
    Qi J; Niu JF; Wang LL
    Huan Jing Ke Xue; 2008 Jan; 29(1):212-8. PubMed ID: 18441943
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Building a Quantitative Structure-Property Relationship (QSPR) Model.
    Clark RD; Daga PR
    Methods Mol Biol; 2019; 1939():139-159. PubMed ID: 30848460
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative structure-pharmacokinetic relationships for drug clearance by using statistical learning methods.
    Yap CW; Li ZR; Chen YZ
    J Mol Graph Model; 2006 Mar; 24(5):383-95. PubMed ID: 16290201
    [TBL] [Abstract][Full Text] [Related]  

  • 11. QSAR/QSPR studies using probabilistic neural networks and generalized regression neural networks.
    Mosier PD; Jurs PC
    J Chem Inf Comput Sci; 2002; 42(6):1460-70. PubMed ID: 12444744
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitative structure/activity relationship modelling of pharmacokinetic properties using genetic algorithm-combined partial least squares method.
    Yamashita F; Fujiwara S; Wanchana S; Hashida M
    J Drug Target; 2006; 14(7):496-504. PubMed ID: 17062396
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterisation of the chemical and biological properties of molecules with QSAR/QSPR and chemical grouping, and its application to a group of alkyl ethers.
    Niska H; Tuppurainen K; Skon JP; Mallett AK; Kolehmainen M
    SAR QSAR Environ Res; 2008; 19(3-4):263-84. PubMed ID: 18484498
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Machine Learning Methods in Computational Toxicology.
    Baskin II
    Methods Mol Biol; 2018; 1800():119-139. PubMed ID: 29934890
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computer prediction of cardiovascular and hematological agents by statistical learning methods.
    Chen X; Li H; Yap CW; Ung CY; Jiang L; Cao ZW; Li YX; Chen YZ
    Cardiovasc Hematol Agents Med Chem; 2007 Jan; 5(1):11-9. PubMed ID: 17266544
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MODEL-molecular descriptor lab: a web-based server for computing structural and physicochemical features of compounds.
    Li ZR; Han LY; Xue Y; Yap CW; Li H; Jiang L; Chen YZ
    Biotechnol Bioeng; 2007 Jun; 97(2):389-96. PubMed ID: 17013940
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure Modification toward Applicability Domain of a QSAR/QSPR Model Considering Activity/Property.
    Ochi S; Miyao T; Funatsu K
    Mol Inform; 2017 Dec; 36(12):. PubMed ID: 28815921
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Performance of Deep and Shallow Neural Networks, the Universal Approximation Theorem, Activity Cliffs, and QSAR.
    Winkler DA; Le TC
    Mol Inform; 2017 Jan; 36(1-2):. PubMed ID: 27783464
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In Silico Study of In Vitro GPCR Assays by QSAR Modeling.
    Mansouri K; Judson RS
    Methods Mol Biol; 2016; 1425():361-81. PubMed ID: 27311474
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Machine Learning in Predictive Toxicology: Recent Applications and Future Directions for Classification Models.
    Wang MWH; Goodman JM; Allen TEH
    Chem Res Toxicol; 2021 Feb; 34(2):217-239. PubMed ID: 33356168
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.